Journal of Applied Mechanics and Technical Physics

, Volume 51, Issue 5, pp 713–720 | Cite as

Asymptotic Analysis of Plastic Flow along the Generatrix in a Thin Cylindrical Layer

  • D. V. Georgievskii


An analytical solution is found for the problem modeling quasistatic compression and flow of an ideal rigid plastic (under the Mises-Hencky criterion) material along the generatrix in a thin cylindrical layer. This problem is a generalization of the classical Prandtl problem. The small asymptotic parameter is the ratio of the layer thickness to its length. The radii of the cylinders can have any intermediate order of smallness. It is shown that when the radii and thickness of the layer are of the same order of smallness, the solution is asymptotically exact in the sense that the number of terms of the series describing the kinematic and dynamic parameters of the flow is finite. Limiting transitions to the classical Prandtl solution are investigated.

Key words

ideal rigid plastic flow Prandtl problem asymptotic expansions flow pressure cylindrical layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Prandtl, “Anwendungsbeispiele zu einem Henckyschen Satzüber das plastische Gleichgewicht,” ZAMM, 4, No. 6, 401–406 (1923).Google Scholar
  2. 2.
    H. Geiringer and W. Prager, “Mechanik isotroper Körper im plastischen Zustand,” Ergeb. Exakten Naturwis, 13, 310–363 (1934).CrossRefGoogle Scholar
  3. 3.
    A. A. Ils’yushin, “Complete plasticity in the flow between rigid surfaces: An analogy to a sand fill and some applications,” Prikl. Mat. Mekh., 19, No. 6, 693–713 (1955).Google Scholar
  4. 4.
    V. V. Sokolovskii, Theory of Plasticity [in Russian], Vysshaya Shkola, Moscow (1969).Google Scholar
  5. 5.
    B. D. Annin, V. O. Bytev, and S. I. Senashov, Group Properties of Elastic and Plastic Equations [in Russian], Nauka, Novosibirsk (1985).Google Scholar
  6. 6.
    B. A. Druyanov and R. I. Nepershin, Theory of Technological Plasticity [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  7. 7.
    M. A. Zadoyan, Dimensional Problems of Plasticity [in Russian], Nauka, Moscow (1992).Google Scholar
  8. 8.
    B. E. Pobedrya and I. L. Guzei, “Mathematical modeling of deformation of composites taking into account thermal diffusion,” Mat. Model. Sist. Prots., No. 6, 82–91 (1998).Google Scholar
  9. 9.
    A. Yu. Ishlinskii and D. D. Ivlev, Mathematical Theory of Plasticity [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  10. 10.
    V. L. Kolmogorov, Plastic Working of Materials [in Russian], Ural. Gos. Tekh. Univ. (Ural. Polytech. Inst.), Ekaterinburg (2001).Google Scholar
  11. 11.
    I. A. Kiiko and V. A. Kadymov, “Generalization of the Prandtl problem of slab compression,” Vestn. Mosk. Gos. Univ., Ser. 1: Mat. Mekh., No. 4, 50–56 (2003).MathSciNetGoogle Scholar
  12. 12.
    S. E. Aleksandrov and E. A. Lyamina, “Strain-rate intensity factors in compression of a layer of a plastic material between cylindrical surfaces,” J. Appl. Mech. Tech. Phys., 50, No. 3, 504–511 (2009).CrossRefADSGoogle Scholar
  13. 13.
    D. V. Georgievskii, “On an axisymmetric analog of the Prandtl problem,” Dokl. Ross. Akad. Nauk, 422, No. 3, 331–333 (2008).MathSciNetGoogle Scholar
  14. 14.
    D. V. Georgievskii, “Asymptotic expansions and the possibility of rejection of hypotheses in the Prandtl problem,” Izv. Ross. Akad. Nauk, Ser. Mekh. Tverd. Tela, No. 1, 83–93 (2009).Google Scholar
  15. 15.
    D. V. Georgievskii, “On ideal rigid flow of an asymptotically thin cylindrical layer,” Dokl. Ross. Akad. Nauk, 429, No. 3, 328–331 (2009).MathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations