Effect of stresses and strains on impurity redistribution in a plate under uniaxial loading

  • M. A. Mikolaichuk
  • A. G. Knyazeva


A model for the saturation of the surface layer of a thin metal plate with an impurity from the environment under uniaxial mechanical loading is proposed and investigated. The effect of stresses and strains on the diffusion process is analyzed. It is shown that, first, due to the deformation of the crystal lattice of the base, stresses that occur in local volumes lead to a change in the diffusion activation energy; second, stresses influence impurity transfer (this effect is similar to mass transfer by pressure diffusion in liquids). The joint effect of the two types of influences of stresses and strains on the behavior of the system at various geometrical and physical sample parameters is numerically investigated.

Key words

diffusion uniaxial loading plane stress state activation volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Eremeev, Diffusion and Stresses [in Russian], Énergoatomizdat, Moscow (1984).Google Scholar
  2. 2.
    J. P. Stark and S. J. Rothman, “Solid-state diffusion,” Physics Today, 30,Issue 8, 53 (1977).CrossRefGoogle Scholar
  3. 3.
    K. P. Gurov, V. A. Kartashkin, and Y. A. Ugaste, Interdiffusion in Multiphase Metal Systems [in Russian], Nauka, Moscow (1981).Google Scholar
  4. 4.
    Ya. E. Geguzin, Diffusion Zone [in Russian], Nauka, Moscow (1979).Google Scholar
  5. 5.
    B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, Wiley, New York (1960).MATHGoogle Scholar
  6. 6.
    T. D. Shermergor, Elasticity Theory for Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).Google Scholar
  7. 7.
    J. Aziz Michael, “Thermodynamics of diffusion under pressure and stress: Relation to point defect mechan isms,” Appl. Phys. Lett., 70,No. 21, 2810–2812 (1997).CrossRefADSGoogle Scholar
  8. 8.
    B. B. Straumal, L. M. Klinger, and L. S. Shvindlerman, “Indium diffusion in tin-germanium single interfaces at high pressures,” Fiz. Tverd. Tela, 25,No. 7, 2085–2089 (1983).Google Scholar
  9. 9.
    H. Mehrer, Diffusion in Solids, Springer, Berlin (2007). (Springer Ser. in Solid-State Sci.; Vol. 155.)Google Scholar
  10. 10.
    R. N. Jeffery and D. Lazarus, “Calculating activation volumes and activation energies from diffusion measurements,” J. Appl. Phys., 41, 3186–3187 (1970).CrossRefADSGoogle Scholar
  11. 11.
    B. Y. Lyubov, Diffusion Processes in Inhomogeneous Solid Media [in Russian], Nauka, Moscow (1981).Google Scholar
  12. 12.
    A. G. Knyazeva, “Diffusion and rheology in locally equilibrium thermodynamics,” in: Mathematical Modeling of System and Processes (collected scientific papers), No. 13 (2005), pp. 45–60.Google Scholar
  13. 13.
    A. G. Knyazeva and Y. G. Donskaya, “A diffusion-deformation model for the growth of a spherical nucleus of a solid-state reaction product,” Combust., Expl., Shock Waves, 33, No. 2, 168–182 (1997).CrossRefGoogle Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science, Siberian DivisionRussian Academy of SciencesTomskRussia

Personalised recommendations