Limit state of structural elements during inelastic deformation

  • A. F. Nikitenko
  • B. S. Reznikov


It is shown that, in the case of an axisymmetric stress state, the solution of the statically definable boundary-value problem for an ideal rigid-plastic body using the Mises-Schleicher strength criterion is extended to the rigid-creep model with any specified creep-rupture strength and corresponds to the limit state of a real creeping body.

Key words

creep creep-rupture strength ideal rigid-plastic and rigid-creep models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Nikitenko, “Limit state of a creeping body,” in: Problems of Optimal Design of Structures, Proc 2nd All-Russian Seminar (Novosibirsk, April 7–9, 1998, Novosibirsk), Univ. of Architecture and Civil Engineering, Novosibirsk (1998), pp. 94–103.Google Scholar
  2. 2.
    A. F. Nikitenko, “Kinetic creep theory and creep-rupture strength analysis for structural elements. 2. Limit state of nonuniformly heated structural elements,” Probl. Prochn., No. 6, 5–14 (2005).Google Scholar
  3. 3.
    L. M. Kachanov, Creep Theory [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  4. 4.
    A. F. Nikitenko, A. M. Kovrizhnykh, and I. V. Kucherenko, “Unified (generalized) criterion of material strength. 1,” Izv. Vyssh. Uchebn. Zaved., Striotel’stvovo, Nos. 11/12, 4–11 (2006).Google Scholar
  5. 5.
    L. M. Kachanov, Foundations of the Theory of Plasticity, North-Holland, Amsterdam-London (1971).MATHGoogle Scholar
  6. 6.
    Yu. N. Rabotnov, Mechanics of Deformable Bodies [in Russian], Nauka, Moscow (1988).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations