Modeling the destruction of ice jams



Elastic small-deformation theory, the equations of hydrodynamics, and a well-tested numerical method are used to solve the axisymmetric problem of determining the stress-strain state in a complex multicomponent system with an ice plate of finite thickness subjected to dynamic loading.

Key words

destruction of ice cover stress deformation dynamic effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. B. Ravich, Flameless Surface Combustion [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1949).Google Scholar
  2. 2.
    V. I. Odinokov, Numerical Study of the Deformation of Materials Using a Coordinate-Free Method [in Russian], Dal’nauka, Vladivostok (1995).Google Scholar
  3. 3.
    V. I. Odinokov, B. G. Kaplunov, A. V. Peskov, and A. A. Bakov, Mathematical Modeling of Complex Technological Processes [in Russian], Nauka, Moscow (2008).Google Scholar
  4. 4.
    V. I. Odinokov and A. M. Sergeeva, “Mathematical modeling for one new method of breaking an ice cover,” J. Appl. Mech. Tech. Phys., 47, No. 2. 266–273 (2006).CrossRefADSGoogle Scholar
  5. 5.
    V. I. Odinokov, A. M. Sergeeva, and E. A. Zakharova, “Mathematical model for ice cover breaking,” Mat. Model., 20, No. 12, 15–26 (2008).MATHGoogle Scholar
  6. 6.
    V. V. Bogorodskii and V. P. Gavrilo, Physical Properties. Modern Methods of Glaciology [in Russian], Gidrometeoizdat, Moscow (1980).Google Scholar
  7. 7.
    V. A. Krokha, Hardening of Metals by Cold Plastic Deformation: Handbook [in Russian], Mashinostroenie, Moscow (1980).Google Scholar

Copyright information

© MAIK/Nauka 2010

Authors and Affiliations

  1. 1.Institute of Machine Sciences and Metallurgy, Far East DivisionRussian Academy of SciencesKomsomol’sk-on-AmurRussia

Personalised recommendations