Skip to main content
Log in

Perturbation method for heat exchange between a gas and solid particles

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The analytical perturbation method is applied here to solve the problem of radiative heat transfer between a gas and solid particles. The data obtained are compared with results calculated by the numerical Runge-Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbasbandy, “The application of homotopy analysis method to nonlinear equations arising in heat transfer,” Phys. Lett., A360, 109–113 (2006).

    MathSciNet  ADS  Google Scholar 

  2. S. J. Liao and I. Pop, “Explicit analytic solution for similarity boundary layer equations,” Int. J. Heat Mass Transfer, 47, 75–85 (2004).

    Article  Google Scholar 

  3. D. D. Ganji and M. Rafei, “Solitary wave solutions for generalized Hitora-Satsuma coupled KdV equation by homotopy perturbation method,” Phys. Lett., A356, 131–137 (2006).

    MathSciNet  ADS  Google Scholar 

  4. A. Aziz and G. Hamad, “Regular perturbation expansions in heat transfer,” Int. J. Mech. Eng. Educ., 5, 167 (1997).

    Google Scholar 

  5. S. J. Liao, “Boundary element method for general nonlinear differential operators,” Eng Anal. Bound. Elem., 202, 91–99 (1997).

    Article  Google Scholar 

  6. S. V. Iyer and K. Vafai, “Passive heat transfer augmentation in a cylindrical annulus utilizing multiple perturbations on the inner and outer cylinders,” Numer. Heat Transfer, A6, 567–586 (1999).

    Google Scholar 

  7. T. K. Aldoss, Y. D. Ali, M. A. Al-Nimr, “MHD mixed convection from a horizontal circular cylinder,” Numer. Heat Transfer, A4, 379–396 (1996).

    Article  ADS  Google Scholar 

  8. J. H. He, “Non-perturbative methods for strongly nonlinear problems,” Dissertation de-Verlag im Internet GmbH, Berlin (2006).

    Google Scholar 

  9. D. D. Ganji and A. Rajabi, “Assessment of homotopy perturbation and perturbation methods in heat transfer radiation equations,” Int. Commun. Heat Mass Transfer, 33, 391–400 (2006).

    Article  Google Scholar 

  10. M. R. Siddique and R. E. Khayat, “Transient linear and nonlinear heat conduction in weakly modulated domains,” Numer. Heat Transfer, A5, 481–500 (2003).

    Article  ADS  Google Scholar 

  11. J. F. Branco, C. T. Pinho, and R. A. Figueiredo, “A dimensionless analysis of radial heat conduction with variable external convection boundary conditions,” Int. Commun. Heat Mass Transfer, 28, No. 4, 489–497 (2001).

    Article  Google Scholar 

  12. J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell Publ. Co., Waltham (1968).

    MATH  Google Scholar 

  13. A. H. Nayfeh, Perturbation Methods, John Wiley and Sons, New York (2000).

    Book  MATH  Google Scholar 

  14. R. Bellman, Perturbation Techniques in Mathematics, Physics and Engineering, Holt, Rinehart and Winston, New York (1964).

    Google Scholar 

  15. A. H. Nayfeh, Perturbation Methods, John Wiley and Sons, New York (1973).

    MATH  Google Scholar 

  16. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford (1975).

    MATH  Google Scholar 

  17. S. Goroshin, M. Bidabadi, and J. H. S. Lee, “Quenching distance of laminar flame in aluminium dust clouds,” Combust Flame, 105, 147–160 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shabani Shahrbabaki.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 6, pp. 55–60, November–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahrbabaki, A.S., Abazari, R. Perturbation method for heat exchange between a gas and solid particles. J Appl Mech Tech Phy 50, 959–964 (2009). https://doi.org/10.1007/s10808-009-0129-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-009-0129-4

Key words

Navigation