Advertisement

Modeling of the differential rotation effect in complex loading of granular media

  • E. I. Kraus
  • S. V. Lavrikov
  • A. E. Medvedev
  • A. F. Revuzhenko
  • I. I. Shabalin
Article

Abstract

A plane problem of directed mass transfer in a granular medium, induced by complex loading with continuous rotation of the principal axes of the strain tensor, is considered. It is proposed to use a hypoplastic model of a granular medium and a model of similarity of a viscous incompressible fluid to describe this effect. A finite-element algorithm is developed for the hypoplastic model, and a numerical solution of a boundary-value problem is constructed. An approximate analytical solution of the initial problem is obtained for the model of similarity of a viscous incompressible fluid. Calculations of deformation kinetics are performed for both models, and the results obtained are compared with available experimental data. Both models are demonstrated to ensure a qualitative description of the deformation process and the effect of directed mass transfer observed in experiments.

Key words

granular medium complex loading mass transfer hypoplastic model finite elements boundary-value problem viscosity small parameter differential rotation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Bobryakov, A. F. Revuzhenko, and E. I. Shemyakin, “Possible mechanism of transfer of the Earth’s mass,” Dokl. Akad. Nauk SSSR, 272, No. 5, 1097–1099 (1983).ADSGoogle Scholar
  2. 2.
    A. F. Revuzhenko, “A class of composite loads for an inelastic material,” J. Appl. Mech. Tech. Phys., 27, No. 5, 772–778 (1986).CrossRefADSGoogle Scholar
  3. 3.
    A. F. Revuzhenko, “Tidal mechanism of mass transfer,” Izv. Akad. Nauk SSSR, Fizika Zemli, No. 6, 13–20 (1991).Google Scholar
  4. 4.
    A. F. Revuzhenko, Mechanics of Elastoplastic Media and Non-Standard Analysis [in Russian], Izd. Novosib. Gos. Univ., Novosibirsk (2000).Google Scholar
  5. 5.
    S. V. Lavrikov and A. Ph. Revuzhenko, “Complex loading of heterogeneous materials with redistribution of internal mass,” Theor. Appl. Fracture Mech., 29, 85–91 (1998).CrossRefGoogle Scholar
  6. 6.
    D. Kolymbas, S. V. Lavrikov and A. F. Revuzhenko, “Method of analysis of mathematical models of media under complex loading,” J. Appl. Mech. Tech. Phys., 40, No. 5, 895–902 (1999).CrossRefADSGoogle Scholar
  7. 7.
    D. Kolymbas, I. Herle, and P.-A. von Wolffersdorff, “Hypoplastic constitutive equation with internal variables,” Int. J. Numer. Anal. Methods Geomech., 19, 415–436 (1995).MATHCrossRefGoogle Scholar
  8. 8.
    A. M. Vaisman and M. A. Gol’dshtik, “Deformation of a granular medium,” Dokl Akad. Nauk SSSR, 252, No. 1, 61–64 (1980).Google Scholar
  9. 9.
    M. A. Gol’dshtik, Transport Processes in a Granular Layer [in Russian], Inst. of Thermophysics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1984).Google Scholar
  10. 10.
    S. P. Kiselev, G. A. Ruev, A. P. Trunev, et al., Shock-Wave Processes in Two-Component and Two-Phase Media [in Russian], Nauka, Novosibirsk (1992).Google Scholar
  11. 11.
    E. Treffz, Mathematical Theory of Elasticity [in Russian], ONTI, Moscow-Leningrad (1934).Google Scholar

Copyright information

© MAIK/Nauka 2009

Authors and Affiliations

  • E. I. Kraus
    • 1
  • S. V. Lavrikov
    • 2
  • A. E. Medvedev
    • 1
  • A. F. Revuzhenko
    • 2
  • I. I. Shabalin
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Mining, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations