Advertisement

Solution of one problem of fracture mechanics

  • M. V. Gavrilkina
  • V. V. Glagolev
  • A. A. Markin
Article

Abstract

This paper considers a model for the opening-mode fracture separation process based on the introduction of an interaction layer. This layer is defined as the region of localization of the fracture process. The stress-strain state of the layer material is uniform in the cross section of the layer. A study is made of the deformation of a double-cantilever beam weakened by a notch whose width is equal to the thickness of the interaction layer. The problem is solved in a linearly geometrical approximation. The thickness of the interaction layer is estimated, and a method for solving the formulated problem is proposed.

Key words

characteristic size ideally elastoplastic model specific work of fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Glagolev, K. A. Kuznetsov, and A. A. Markin, “Model for the fracture separation process of a deformable solid,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6. 61–68 (2003).Google Scholar
  2. 2.
    V. V. Glagolev and A. A. Markin, “Model for the steady-state separation of a material layer,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 121–129 (2004).Google Scholar
  3. 3.
    D. D. Ivlev, Theory of the Limit State and Ideal Plasticity (selected papers) [in Russian], Voronezh Gos. Univ., Voronezh (2005).Google Scholar
  4. 4.
    S. A. Zegzhda, N. F. Morozov, and B. N. Semenov, “On the beam approach in crack propagation problems”, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 114–120 (1999).Google Scholar
  5. 5.
    A. A. Amosov, Yu. A. Dubinskii and N. V. Kopchenova, Computational Methods for Engineers: Manual [in Russian], Vysshaya Shkola, Moscow (1994).Google Scholar
  6. 6.
    G. P. Cherepanov, Brittle Fracture Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  7. 7.
    V. Z. Parton and E. M. Morozov, Elastoplastic Fracture Mechanics [in Russian], Nauka, Moscow (1985).Google Scholar
  8. 8.
    A. A. Lebedev and N. G. Chausov, “Phenomenological foundations for estimating the fracture resistance of materials from the parameters of descending segments of strain diagrams,” Probl. Prochn., No. 2, 6–10 (1983).Google Scholar
  9. 9.
    V. Z. Parton and E. M. Morozov, “One substantiation of the Irwin criterion at the crack tip,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 147–153 (1968).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • M. V. Gavrilkina
    • 1
  • V. V. Glagolev
    • 1
  • A. A. Markin
    • 1
  1. 1.Tula State UniversityTula

Personalised recommendations