Advertisement

Rayleigh-Benard problem for an anomalous fluid

  • A. N. Ermolenko
Article

Abstract

The stability of the state of rest of a heated infinite horizontal layer of a viscous heat-conducting fluid (the Rayleigh-Benard problem) is considered. The equation of state for the fluid takes into account the nonmonotonic temperature and pressure dependence of water density. Instability of the mechanical equilibrium with respect to small monotonic perturbations is studied. The effect of the problem parameters on the Rayleigh numbers and their corresponding critical motions is investigated numerically using linear theory. Numerical investigation of the spectral problem is based on the Godunov-Abramov orthogonalization method. The calculation results are compared with the well-known results for the limiting case where the density is considered a quadratic function of temperature and does not depend on pressure.

Key words

Rayleigh-Benard problem Oberbeck-Boussinesq approximation anomalous fluid instability perturbation monotonicity principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. G. Granin and M. N. Shimarev, “On the problem of stratification and convection mechanism in Lake Baikal,” Dokl. Akad. Nauk SSSR, 321, No. 2, 381–385 (1991).Google Scholar
  2. 2.
    T. M. Ravens, O. Kosis, A. Wuest, et al., “Direct evidence of deep water renewal in south basin of Lake Baikal,” in: 5th Int. Symp. on Stratified Flows (Vancouver, July 10–13, 2000), Vol. 1, Dep. of Civil Eng., Univ. of British Columbia, Vancouver (2000), pp. 419–425.Google Scholar
  3. 3.
    G. Yu. Vereshchagin, “Some data on the deep water conditions in Lake Baikal in the region of Maritui,” in: Proc. Commission on the Study of Lake Baikal, Vol. 2, (1927), pp. 77–138.Google Scholar
  4. 4.
    L. V. Ovsyannikov, Equation of Dynamic Convection of the Sea [in Russian], Preprint, Institute of Hydrodynamics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1967).Google Scholar
  5. 5.
    G. Z. Gershuni and E. M. Zhokhovitskii, Convective Stability of an Incompressible Fluid [in Russian], Nauka, Moscow (1972).Google Scholar
  6. 6.
    G. Veronis, “Penetrative convection,” Astrophys. J., 137, Part 2, 641–663 (1963).MATHCrossRefADSGoogle Scholar
  7. 7.
    A. Furumoto and C. Rooth, “Observations on convection in water cooled below,” Geophys. Fluid Dyn., No. 3, 1–14 (1961).Google Scholar
  8. 8.
    K. A. Nadolin, “Convection in a horizontal fluid layer with inversion of the specific volume,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1, 43–49 (1989).MathSciNetGoogle Scholar
  9. 9.
    K. A. Nadolin, “On the Boussinesq approximation in the Rayleigh-Benard problem,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 3–10 (1995).Google Scholar
  10. 10.
    K. A. Nadolin, “On penetrative convection in the approximation of an isothermally incompressible fluid,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 40–52 (1996).Google Scholar
  11. 11.
    M. A. Gol’dshtik and V. N. Shtern, Hydrodynamic Stability and Turbulence [in Russian], Nauka, Novosibirsk (1977).Google Scholar
  12. 12.
    S. K. Godunov, “On the numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, Issue 3, No. 99, 171–174 (1961).MATHMathSciNetGoogle Scholar
  13. 13.
    V. K. Andreev, V. E. Zakhvataev, and E. A. Ryabitskii, Thermocapillary Instability [in Russian], Sib. Izdat. Firma Nauka, Novosibirsk (2000).Google Scholar
  14. 14.
    S. A. Gaponov and A. A. Maslov, Propagation of Perturbations in Compressible Flows [in Russian], Nauka, Novosibirsk (1980).Google Scholar
  15. 15.
    M. N. Shimarev, V. I. Verbolov, N. G. Granin, and P. P. Sherstyankin. Physical Limnology of Lake Baikal: A Review, S.n., Irkutsk-Okayama (1994).Google Scholar
  16. 16.
    O. B. Bocharov, O. F. Vasilev, and T. É. Ovchinnikova “Approximate equation of the state of sweet water near the temperature of maximum density,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 35, No. 4, 556–558 (1999).Google Scholar
  17. 17.
    V. I. Yudovich, “On the free-convection equations in the Oberbeck-Boussinesq approximation,” Rostov-on-Don (1990). Deposited at VINITI 12.13.90, No. 6225-V90.Google Scholar
  18. 18.
    O. B. Bocharov and T. É. Ovchinnikova, “On thermogravitational convection in the near-shore zone of a deep lake in the spring-summer heating period,” Vychisl. Tekhnol., 3, No. 4, 3–12 (1998).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. N. Ermolenko
    • 1
  1. 1.Novosibirsk State UniversityNovosibirsk

Personalised recommendations