Skip to main content
Log in

Gas flow activated in an electron-beam plasma

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Probe measurements of electron temperature and density, electron energy distribution functions, and plasma potential in a free gas jet activated in an electron-beam plasma and in a planar reactor are presented. The measurements are performed by single, double, and triple electrostatic probes in jets of helium-argon and helium-argon-monosilane gas mixtures. The latter mixture is used to deposit films of microcrystalline and epitaxial silicon. Microcrystalline silicon films of higher quality are obtained in a dense (ne ≈ 1017 m−3) and cold (Te ≈ 1.0–0.5 eV) plasma with a low potential (Usp ≈ 10 V), whereas the growth of monocrystalline silicon films requires a hotter plasma (Te ≈ 3–5 eV) with a potential Usp ≈ 15 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Choy, “Chemical vapour deposition of coatings,” Prog. Mater. Sci., 48, No. 2, 57–170 (2003).

    Article  Google Scholar 

  2. A. Ito, R. Miyano, R. Kitada, et al., “Production of high-density plasmas in electron-beam-excited plasma device,” Jpn. J. Appl. Phys, Pt. 1, 33, No. 7B, 4239–4242 (1994).

    Article  Google Scholar 

  3. J. K. Rath, “Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications,” Solar Energ. Mater. Solar Cells, 76, No. 4, 431–487 (2003).

    Article  MathSciNet  Google Scholar 

  4. R. G. Sharafutdinov, S. Ya. Khmel, V. G. Shchukin, et al., “Gas-jet electron beam plasma chemical vapor deposition method for solar cell application,” Solar Energ. Mater. Solar Cells, 89, Nos. 2/3, 99–111 (2005).

    Article  Google Scholar 

  5. M. Imaizumi, K. Okitsu, M. Yamaguchi, et al., “Growth of microcrystalline silicon film by electron beam excited plasma chemical vapor deposition without hydrogen dilution,” J. Vac. Sci. Technol., Ser. A, 16, No. 5, 3134–3137 (1998).

    Article  ADS  Google Scholar 

  6. R. Huddelstone and S. Leonard (eds.), Plasma Diagnostic Techniques, New York (1967).

  7. Yu. A. Ivanov, Yu. A. Lebedev, and L. S. Polak, Contact Diagnostic Methods in Nonequilibrium Plasma Chemistry [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  8. V. M. Zalkind, O. S. Pavlichenko, and V. P. Tarasenko, “Measuring the electron temperature in a plasma by a triple electric probe,” Vopr. Atom. Nauki Tekh., Ser. Fiz. Plazmy Probl. UTR, No. 2, 69 (1975).

  9. S. Tada, S. Takashima, M. Ito, et al., “Investigation of nitrogen atoms in low-pressure nitrogen plasmas using a compact electron-beam-excited plasma source,” Jpn. J. Appl. Phys., Pt. 1, 41, No. 7A, 4691–4695 (2002).

    Article  Google Scholar 

  10. D. D. Blackwell, S. G. Walton, D. Leonhardt, et al., “Probe diagnostic development for electron beam produced plasmas,” J. Vac. Sci. Technol., Ser. A, 19, Part 1, No. 4, 1330–1335 (2001).

    Article  ADS  Google Scholar 

  11. C. Rosenblad, H. R. Deller, A. Dommann, et al., “Silicon epitaxy by low-energy plasma enhanced chemical vapor deposition,” J. Vac. Sci. Technol., Ser. A, 16, No. 5, 2785–2790 (1998).

    Article  ADS  Google Scholar 

  12. Q. Lin, X. Lin, Y. Yu, et al., “Measurements in silane radio frequency glow discharges using a tuned and heated Langmuir probe,” J. Appl. Phys., 74, No. 8, 4899–4902 (1993).

    Article  ADS  Google Scholar 

  13. R. G. Sharafutdinov, V. M. Karsten, A. A. Polisan, et al., “Method for carrying out homogeneous and heterogeneous chemical reactions using plasma,” Patent No. AU2002332200, IC WO 03068383, Publ. 08.21.2003.

  14. S. Tada, S. Takashima, M. Ito, et al., “Measurement and control of absolute nitrogen atom density in an electron-beam-excited plasma using vacuum ultraviolet absorption spectroscopy,” J. Appl. Phys., 88, No. 4, 1756–1759 (2000).

    Article  ADS  Google Scholar 

  15. R. G. Sharafutdinov, V. M. Karsten, S. Ya. Khmel, et al., “Epitaxial silicon films deposited at high rates by gas-jet electron beam plasma CVD,” Surface Coat. Technol., 174/175, 1178–1181 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 3–10, January–February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantinov, V.O., Khmel, S.Y. Gas flow activated in an electron-beam plasma. J Appl Mech Tech Phys 48, 1–6 (2007). https://doi.org/10.1007/s10808-007-0001-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-007-0001-3

Key words

Navigation