Gas flow activated in an electron-beam plasma

  • V. O. Konstantinov
  • S. Ya. Khmel


Probe measurements of electron temperature and density, electron energy distribution functions, and plasma potential in a free gas jet activated in an electron-beam plasma and in a planar reactor are presented. The measurements are performed by single, double, and triple electrostatic probes in jets of helium-argon and helium-argon-monosilane gas mixtures. The latter mixture is used to deposit films of microcrystalline and epitaxial silicon. Microcrystalline silicon films of higher quality are obtained in a dense (ne ≈ 1017 m−3) and cold (Te ≈ 1.0–0.5 eV) plasma with a low potential (Usp ≈ 10 V), whereas the growth of monocrystalline silicon films requires a hotter plasma (Te ≈ 3–5 eV) with a potential Usp ≈ 15 V.

Key words

probe diagnostics electron-beam plasma chemical vapor deposition of thin silicon films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Choy, “Chemical vapour deposition of coatings,” Prog. Mater. Sci., 48, No. 2, 57–170 (2003).CrossRefGoogle Scholar
  2. 2.
    A. Ito, R. Miyano, R. Kitada, et al., “Production of high-density plasmas in electron-beam-excited plasma device,” Jpn. J. Appl. Phys, Pt. 1, 33, No. 7B, 4239–4242 (1994).CrossRefGoogle Scholar
  3. 3.
    J. K. Rath, “Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications,” Solar Energ. Mater. Solar Cells, 76, No. 4, 431–487 (2003).CrossRefMathSciNetGoogle Scholar
  4. 4.
    R. G. Sharafutdinov, S. Ya. Khmel, V. G. Shchukin, et al., “Gas-jet electron beam plasma chemical vapor deposition method for solar cell application,” Solar Energ. Mater. Solar Cells, 89, Nos. 2/3, 99–111 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Imaizumi, K. Okitsu, M. Yamaguchi, et al., “Growth of microcrystalline silicon film by electron beam excited plasma chemical vapor deposition without hydrogen dilution,” J. Vac. Sci. Technol., Ser. A, 16, No. 5, 3134–3137 (1998).CrossRefADSGoogle Scholar
  6. 6.
    R. Huddelstone and S. Leonard (eds.), Plasma Diagnostic Techniques, New York (1967).Google Scholar
  7. 7.
    Yu. A. Ivanov, Yu. A. Lebedev, and L. S. Polak, Contact Diagnostic Methods in Nonequilibrium Plasma Chemistry [in Russian], Nauka, Moscow (1981).Google Scholar
  8. 8.
    V. M. Zalkind, O. S. Pavlichenko, and V. P. Tarasenko, “Measuring the electron temperature in a plasma by a triple electric probe,” Vopr. Atom. Nauki Tekh., Ser. Fiz. Plazmy Probl. UTR, No. 2, 69 (1975).Google Scholar
  9. 9.
    S. Tada, S. Takashima, M. Ito, et al., “Investigation of nitrogen atoms in low-pressure nitrogen plasmas using a compact electron-beam-excited plasma source,” Jpn. J. Appl. Phys., Pt. 1, 41, No. 7A, 4691–4695 (2002).CrossRefGoogle Scholar
  10. 10.
    D. D. Blackwell, S. G. Walton, D. Leonhardt, et al., “Probe diagnostic development for electron beam produced plasmas,” J. Vac. Sci. Technol., Ser. A, 19, Part 1, No. 4, 1330–1335 (2001).CrossRefADSGoogle Scholar
  11. 11.
    C. Rosenblad, H. R. Deller, A. Dommann, et al., “Silicon epitaxy by low-energy plasma enhanced chemical vapor deposition,” J. Vac. Sci. Technol., Ser. A, 16, No. 5, 2785–2790 (1998).CrossRefADSGoogle Scholar
  12. 12.
    Q. Lin, X. Lin, Y. Yu, et al., “Measurements in silane radio frequency glow discharges using a tuned and heated Langmuir probe,” J. Appl. Phys., 74, No. 8, 4899–4902 (1993).CrossRefADSGoogle Scholar
  13. 13.
    R. G. Sharafutdinov, V. M. Karsten, A. A. Polisan, et al., “Method for carrying out homogeneous and heterogeneous chemical reactions using plasma,” Patent No. AU2002332200, IC WO 03068383, Publ. 08.21.2003.Google Scholar
  14. 14.
    S. Tada, S. Takashima, M. Ito, et al., “Measurement and control of absolute nitrogen atom density in an electron-beam-excited plasma using vacuum ultraviolet absorption spectroscopy,” J. Appl. Phys., 88, No. 4, 1756–1759 (2000).CrossRefADSGoogle Scholar
  15. 15.
    R. G. Sharafutdinov, V. M. Karsten, S. Ya. Khmel, et al., “Epitaxial silicon films deposited at high rates by gas-jet electron beam plasma CVD,” Surface Coat. Technol., 174/175, 1178–1181 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. O. Konstantinov
    • 1
  • S. Ya. Khmel
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations