Journal of Applied Mechanics and Technical Physics

, Volume 47, Issue 5, pp 628–636 | Cite as

On solving the problem of reflection of linear waves in a fluid from a porous half-space saturated by this fluid

  • V. Sh. Shagapov
  • A. Sh. Sultanov
  • S. F. Urmancheev


Solutions of the problem of reflection of a stepwise pressure wave in a linearly compressed fluid from a flat boundary of a porous medium of infinite length saturated by the same fluid are obtained in the acoustic approximation. Based on analytical solutions, a numerical analysis is performed to reveal the specific features of the reflected and incident waves, depending on porosity and permeability of the porous half-space.

Key words

stepwise shock wave porous half-space filtration rate reflected and incident waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. I. Frenkel’, “Theory of seismic and seismoelectric phenomena in wet soil,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 8, No. 4, 133–150 (1944).MathSciNetGoogle Scholar
  2. 2.
    M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low frequency range,” J. Acoust. Soc. Amer., 28, No. 2, 169–178 (1956).Google Scholar
  3. 3.
    A. Yu. Yumatov and M. G. Markov, “Propagation of an elastic longitudinal wave in a porous crumbling medium,” Geolog. Geofiz., No. 3, 98–104 (1987).Google Scholar
  4. 4.
    B. Gurevich and S. Lopatnilov, “Velocity and attenuation of elastic waves in finely layered porous rocks,” Geophys. J. Int., 121, 933–947 (1995).Google Scholar
  5. 5.
    J. A. Hudson, E. Liu, and S. Crampin, “The mechanical properties of materials with interconnected cracks and pores,” Geophys. J. Int., 124, 105–112 (1996).Google Scholar
  6. 6.
    A. A. Gubaidullin and O. Yu. Kuchugurina, “Propagation of weak perturbations in porous crumbling media,” Prikl. Mat. Mekh., 63, No. 5, 816 (1999).MathSciNetGoogle Scholar
  7. 7.
    V. Sh. Shagapov, I. G. Khusainov, and V. L. Dmitriev, “Propagation of linear waves in gas-saturated porous media with allowance for interphase heat transfer,” J. Appl. Mech. Tech. Phys., 45, No. 4, 552–557 (2004).MATHCrossRefGoogle Scholar
  8. 8.
    A. G. Kutushev and S. P. Rodionov, “Numerical study of the effect of the parameters of a bulk layer and an incident shock wave on the pressure at a shielded flat wall,” Combust., Expl., Shock Waves, 35, No. 2, 206–213 (1999).Google Scholar
  9. 9.
    A. A. Gubaidullin, D. N. Dudko, and S. F. Urmancheev, “Modeling of the interaction between an air shock wave and a porous screen,” Combust., Expl., Shock Waves, 36, No. 4, 496–505 (2000).Google Scholar
  10. 10.
    A. A. Abrashkin, V. S. Averbakh, S. N. Vlasov, et al., “Possible mechanism of the acoustic action on partly saturated porous media,” Akust. Zh., 51, 6–19 (2005).Google Scholar
  11. 11.
    Z. S. Dudin and V. N. Nikolaevskii, “Nonlinear waves in porous media saturated by “live” oil,” Akust. Zh., 51, 74–80 (2005).Google Scholar
  12. 12.
    V. Yu. Zaitsev, V. É. Gusev, V. E. Nazarov, and B. Castagnede, “Interaction of acoustic waves with cracks: Elastic and inelastic mechanisms of nonlinearity with different time scales,” Akust. Zh., 51, 80–92 (2005).Google Scholar
  13. 13.
    G. A. Maksimov and A. V. Radchenko, “Modeling of oil-production intensification under an acoustic action on the oil bed from the well,” Akust. Zh., 51, 118–132 (2005).Google Scholar
  14. 14.
    M. G. Markov, “Propagation of elastic longitudinal waves in a saturated porous medium with spherical inhomogeneities,” Akust. Zh., 51, 132–140 (2005).Google Scholar
  15. 15.
    V. N. Nikolaevskii and G. S. Stepanova, “Nonlinear seismics and acoustic effect on oil production from an oil bed,” Akust. Zh., 51, 150–160 (2005).Google Scholar
  16. 16.
    G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Motion of Liquids and Gases in Porous Beds [in Russian], Nedra, Moscow (1984).Google Scholar
  17. 17.
    M. A. Lavrent’ev and V. V. Shabat, Methods of the Theory of Functions of Complex Variables [in Russian], Nauka, Moscow (1987).Google Scholar
  18. 18.
    H. Carslaw and J. Jaeger, Operational Methods in Applied Mathematics, London (1943).Google Scholar
  19. 19.
    I. I. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (1980).Google Scholar
  20. 20.
    V. I. Krylov and L. T. Shul’gina, Reference Book on Numerical Integration [in Russian], Nauka, Moscow (1966).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. Sh. Shagapov
    • 1
  • A. Sh. Sultanov
    • 1
  • S. F. Urmancheev
    • 1
  1. 1.Institute of Mechanics, Ufa Research CenterRussian Academy of SciencesUfa

Personalised recommendations