Advertisement

Application of flow suction for controlling the shedding of large-scale vortices at boundary-layer separation

  • A. V. Dovgal
  • A. M. Sorokin
Article

Abstract

A wind-tunnel study of the influence of flow suction on laminar boundary-layer separation behind a two-dimensional step on the surface is performed. Hot-wire measurements are carried out at low subsonic flow velocities. It is demonstrated that this method of flow control allows suppressing the formation of large-scale vortices determined by global stability properties of the separation region.

Key words

boundary-layer separation vortex shedding suction separation control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Dovgal and V. V. Kozlov, “Influence of acoustic perturbations on the flow structure in a boundary layer with adverse pressure gradient,” Fluid Dynamics, 18, 205–209 (1983).CrossRefGoogle Scholar
  2. 2.
    K. B. M. Q. Zaman and D. J. McKinzie, “Control of laminar separation over airfoils by acoustic excitation,” AIAA J., 29, No. 7, 1075–1083 (1991).ADSGoogle Scholar
  3. 3.
    F. W. Roos and J. T. Kegelman, “Control of coherent structures in reattaching laminar and turbulent shear layers,” AIAA J., 24, No. 12, 1956–1963 (1986).ADSGoogle Scholar
  4. 4.
    M. Kiya, M. Shimizu, O. Mochizuki, Y. Ido, and H. Tezuka, “Active forcing of an axisymmetric leading-edge turbulent separation bubble,” AIAA Paper No. 93-3245 (1993).Google Scholar
  5. 5.
    M. Hahn and W. Pfenninger, “Prevention of transition over a backward step by suction,” J. Aircraft, 10, No. 10, 618–622 (1973).CrossRefGoogle Scholar
  6. 6.
    A. A. Al-Maaitah, A. H. Nayfeh, and S. A. Ragab, “Effect of suction on the stability of subsonic flows over smooth backward-facing steps,” AIAA J., 28, No. 11, 1916–1924 (1990).MATHCrossRefGoogle Scholar
  7. 7.
    A. A. Al-Maaitah, A. H. Nayfeh, and S. A. Ragab, “Effect of wall cooling on the stability of compressible subsonic flows over smooth humps and backward-facing steps,” Phys. Fluids, Ser. A, 2, No. 3, 381–389 (1990).CrossRefADSMATHGoogle Scholar
  8. 8.
    L. W. Sigurdson and A. Roshko, “The structure and control of a turbulent reattaching flow,” in: Proc. of the IUTAM Symp. on Turbulence Management and Relaminarisation (Bangalore, India, 1987), Springer-Verlag, Berlin (1988), pp. 497–514.Google Scholar
  9. 9.
    A. V. Dovgal and A. M. Sorokin, “Instability of a laminar separation bubble to vortex shedding,” Thermophys. Aeromech., 8, No. 2, 179–186 (2001).Google Scholar
  10. 10.
    A. V. Dovgal and A. M. Sorokin, “Experimental modeling of vortex shedding at flow separation behind a backward-facing step,” Thermophys. Aeromech., 9, No. 2, 183–190 (2002).Google Scholar
  11. 11.
    A. V. Dovgal and A. M. Sorokin, “Interaction of large-scale and small-scale oscillations during separation of a laminar boundary layer,” J. Appl. Mech. Tech. Phys., 45, No. 4, 517–522 (2004).CrossRefADSGoogle Scholar
  12. 12.
    U. Dallmann, Th. Herberg, H. Gebing, et al., “Flow field diagnostics: topological flow changes and spatio-temporal flow structure,” AIAA Paper No. 95-0791 (1995).Google Scholar
  13. 13.
    M. Marquillie and U. Ehrenstein, “On the onset of nonlinear oscillations in a separating boundary-layer flow,” J. Fluid Mech., 490, 169–188 (2003).MathSciNetCrossRefADSMATHGoogle Scholar
  14. 14.
    H. Bestek, K. Gruber, and H. Fasel, “Self-excited unsteadiness of laminar separation bubbles caused by natural transition,” in: The Prediction and Exploitation of Separated Flow, Roy. Aeronaut. Soc., London (1989), pp. 14.1–14.16.Google Scholar
  15. 15.
    D. A. Hammond and L. G. Redekopp, “Local and global instability properties of separation bubbles,” Europ. J. Mech., Ser. B: Fluids, 17, No. 2, 145–164 (1998).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. V. Dovgal
    • 1
  • A. M. Sorokin
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations