Numerical Study of the Near-Wall Gas-Droplet Jet in a Tube with a Heat Flux on the Surface

  • V. I. Terekhov
  • M. A. Pakhomov


A model for calculating the flow of a turbulent mixture of air and suspended liquid particles injected into the near-wall region is developed within a unified approach of mechanics of heterogeneous media in the two-velocity and two-temperature approximation of the Eulerian approach. The influence of droplet evaporation in the near-wall jet on heat transfer between the two-phase gas-droplet flow and the wall is studied in the case of heat addition to the latter.

Key words

gas-droplet near-wall screen two-fluid model evaporation nonadiabatic surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Vasil'ev, “Efficiency of the gas-vapor-liquid heat screen behind a tangential slot,” Promyshl. Teplotekh., 10, No.4, 36–38 (1988).ADSGoogle Scholar
  2. 2.
    V. M. Repukhov and A. I. Neduzhko, “Efficiency of the gas-vapor-liquid heat screen behind tangential slots,” Promyshl. Teplotekh., 11, No.4, 31–37 (1989).Google Scholar
  3. 3.
    V. I. Terekhov and M. A. Pakhomov, “The study of structure, heat and mass transfer in the gas-droplet near-wall jet in a tube,” in: Proc. 3rd Int. Symp. on Two-Phase Flow Modelling and Experimentation (Pisa, Italy, May 30–June 4, 2004), Edizioni ETS, Pisa (2004); CD-ROM, Paper No. VEN 11.Google Scholar
  4. 4.
    V. I. Terekhov and M. A. Pakhomov, “The modeling of a tube flow with injection of near-wall non-isothermal turbulent gas-droplets jet,” in: Proc. 5th Int. Conf. on Multiphase Flow (ISMF-2004), Yokohama, Japan, September 22–24 (2004); CD-ROM, Paper No. 135.Google Scholar
  5. 5.
    V. I. Terekhov and M. A. Pakhomov, “The numerical modeling of the tube turbulent gas-drop flow with phase changes,” Int. J. Therm. Sci., 43, No.6, 595–610 (2004).CrossRefGoogle Scholar
  6. 6.
    V. I. Terekhov, K. A. Sharov, and N. E. Shishkin, “Experimental study of gas-flow mixing with a near-wall gas-droplet jet,” Teplofiz. Aeromekh., 6, No.3, 331–340 (1999).Google Scholar
  7. 7.
    V. I. Terekhov, K. A. Sharov, and N. E. Shishkin, “Thermoprotective properties of gas-droplet screens in a vertical cylindrical tube,” Izv. Ross. Akad. Nauk, Energetika, No. 6, 111–119 (2003).Google Scholar
  8. 8.
    B. A. Zhestkov, V. V. Glazkov, and M. D. Guseva, Method for Calculating the Wall Temperature during Jet and Hybrid Cooling [in Russian], Gostekhteoretizdat, Moscow (1955).Google Scholar
  9. 9.
    E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer, McGraw-Hill, New York (1959).Google Scholar
  10. 10.
    R. J. Goldstein, “Film cooling,” in: Advance in Heat Transfer-1971, Academic Press, New York (1971), Vol. 7, pp. 321–378.Google Scholar
  11. 11.
    V. M. Repukhov, Theory of Thermal Protection of the Wall by Gas Injection [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  12. 12.
    E. P. Volchkov, Near-Wall Gas Screens [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  13. 13.
    G. N. Abramovich, T. A. Girshovich, S. Yu. Krasheninnikov, et al., Theory of Turbulent Jets [in Russian], Nauka, Moscow (1984).Google Scholar
  14. 14.
    S. S. Kutateladze and A. I. Leont'ev, Heat and Mass Transfer, and Friction in a Turbulent Boundary Layer [in Russian], Energoatomizdat, Moscow (1985).Google Scholar
  15. 15.
    D. A. Drew, “Mathematical modeling of two-phase flow,” Ann. Rev. Fluid Mech., 15, 261–291 (1983).CrossRefADSMATHGoogle Scholar
  16. 16.
    A. A. Shraiber, L. B. Gavin, V. A. Naumov, et al., Turbulent Gas-Suspension Flows [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  17. 17.
    E. P. Volkov, L. I. Zaichik, and V. A. Pershukov, Modeling the Combustion of Solid Fuels [in Russian], Nauka, Moscow (1994).Google Scholar
  18. 18.
    I. V. Derevich, “Hydrodynamics and heat and mass transfer of particles in a turbulent flow of a gas suspension in a tube,” Teplofiz. Vys. Temp., 40, No.1, 86–99 (2002).Google Scholar
  19. 19.
    K. Mastanaiah and E. N. Ganic, “Heat transfer in two-component dispersed flow,” Trans. ASME, J. Heat Transfer, 103, No.2, 300–306 (1981).Google Scholar
  20. 20.
    V. I. Terekhov and M. A. Pakhomov, “Numerical study of hydrodynamics and heat and mass transfer of a ducted gas-vapor-droplet flow,” J. Appl. Mech. Tech. Phys., 44, No.1, 90–101 (2003).CrossRefGoogle Scholar
  21. 21.
    C. B. Hwang and C. A. Lin, “Improved low-Reynolds-number \(k - \tilde \varepsilon\) model based on direct simulation data,” AIAA J., 36, No.1, 38–43 (1998).Google Scholar
  22. 22.
    I. Yu. Brailovskaya and L. A. Chudov, “Solving the boundary-layer equations by the difference technique,” Vych. Metody Programm., No. 1, 167–182 (1962).Google Scholar
  23. 23.
    C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 2, Springer-Verlag, Berlin (1988).Google Scholar
  24. 24.
    A. V. Lebedev and Yu. V. Shvaikovskii, “Experimental study of distributions of velocity and turbulent characteristics in the gas screen,” Teplofiz. Vys. Temp., 3, No.4, 569–576 (1965).Google Scholar
  25. 25.
    J. P. Hartnett, R. C. Birkebak, and E. R. G. Eckert, “Velocity distribution, temperature distributions, effectiveness, and heat transfer for air injected through a tangential slot into a turbulent boundary layer,” Trans. ASME, J. Heat Transf., 83, 293–306 (1961).Google Scholar
  26. 26.
    R. A. Seban and L. H. Back, “Velocity and temperature profiles in turbulent boundary layers with tangential injection,” Trans. ASME, J. Heat Transfer, 84 (1962).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. I. Terekhov
    • 1
  • M. A. Pakhomov
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations