Advertisement

New X-Ray Techniques for Flow Visualization and Measurement of Hydrodynamic Flow Parameters in Opaque Heterogeneous Media

  • E. I. Bichenkov
  • E. I. Palchikov
  • S. V. Sukhinin
  • A. N. Cheremisin
  • A. I. Romanov
  • M. A. Romanyuta
  • K. S. Seleznev
Article
  • 43 Downloads

Abstract

This paper proposes and validates a method for the quantitative analysis of multiphase flows and objects of complex composition with image registration on a charge-coupled-device array taking into account the X-ray spectral characteristics. The method was tested on objects of known composition and shape. New approaches are formulated to solve a number of research problems related to the use of modern registration techniques and computer-based tools for X-ray image processing.

Key words

X-rays spectral distribution absorption photodetector CCD array digital image processing tomography filtration multicomponent fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. J. Vinegar, “X-ray CT and NMR imaging of rocks,” J. Petrol. Technol., 38, No.3, 257–259 (1986).Google Scholar
  2. 2.
    E. S. Sprunt, K. P. Desal, M. E. Coles, et al., “CT-scan-monitored electrical-resistivity measurements show problems achieving homogeneous saturation,” SPE Formation Evaluation, 6, No.3, 134–140 (1991).Google Scholar
  3. 3.
    V. C. Tidwell and R. J. Glass, “X-ray visible light transmission for laboratory measurement of two-dimensional saturation fields in thin-slab systems,” Water Resour. Res., 30, No.11, 2873–2882 (1994).CrossRefGoogle Scholar
  4. 4.
    “The XRSC-198 two or three-phase X-ray core flood scanning system,” Coretest Systems, Inc., 400 Woodview Av., Morgan Hill, CA 95037, USA (2005); http://www.coretest.com/pdf/xrsc-198.pdf.Google Scholar
  5. 5.
    “AXRP-300 automated X-ray relative permeability system,” Core Laboratories. 2015 McKenzie, Suite 106, Carrollton, Texas, 75006, USA (2005); http://www.corelab.com/coreinst/pdf/advanced_rock/axrp-300.pdf.Google Scholar
  6. 6.
    B. Sharma, W. Brigham, and L. Castanier, “CT imaging techniques for two-phase and three-phase in situ saturation measurements,” SUPRI TR 107 Report, Contract No. DE-FG22-96BC14994, U. S. Dep. of Energy, June (1997).Google Scholar
  7. 7.
    J. R. Janesick, “Large-area scientific CCDs from memory device to imager,” OE Reports No. 110, SPIE-The Int. Soc. for Optical Eng., Bellingham, WA, USA, February (1993).Google Scholar
  8. 8.
    V. N. Vasil'ev, L. A. Levbedev, V. P. Sidorin, and R. V. Stavitskii, Emission Spectra of X-ray Facilities [in Russian], Energoatomizdat, Moscow (1990).Google Scholar
  9. 9.
    A. I. Romanov, “Experimental study of the emission spectra of flash X-ray systems for recording dynamic processes in heterogeneous media,” Bachelor's Dissertation, Novosibirsk State University (2003).Google Scholar
  10. 10.
    V. Sundararaman, M. A. Prasad, and R. B. Prasad, “Computed spectra from diagnostic and therapeutic X-ray tubes,” Phys. Med. Biol., 18, No.2, 208–218 (1973).CrossRefPubMedGoogle Scholar
  11. 11.
    E. I. Bichenkov, V. L. Ovsiannikov, and E. I. Palchikov, “Dose and duration measurement of X-ray flash dependent on discharge circuit parameters,” in: Proc. of the XI Int. Symp. on Discharge and Electrical Insulation in Vacuum (Berlin, DDR, 24–28 Sept., 1984), Vol. 2, Berlin, (1984), pp. 451–454; http://isdeiv.lbl.gov.Google Scholar
  12. 12.
    “Attenuation and absorption spectra for various media,” National Institute of Standards and Technology, Gaithersburg, MD, USA (2005); http://physics.nist.gov/PhysRefData/XrayMassCoef/.Google Scholar
  13. 13.
    E. R. Bartuli, A. Yu. Burlev, E. I. Palchikov, and S. V. Sukhinin, “Digital radiographic measurement of the dynamics of spatial fluid distribution in a porous sample,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 121, Inst. Of Hydrodynamics, Sib, Div., Russian Acad. of Sci., Novosibirsk (2002), pp. 56–69.Google Scholar
  14. 14.
    A. S. Besov, Y. A. Schemelinin, E. I. Palchikov, et al., “Researching the dynamics of movement of gas-fluid mixture in a porous medium by means of low-angle tomography,” in: Proc. of the V Int. Conf. on Multiphase Flow (Yokohama, Jpn., May 30–June 4, 2004), The University of Tokyo (2004), p. 106; CD-ROM Proc. Paper No. 140.Google Scholar
  15. 15.
    E. I. Palchikov, “Radiographic observation of fluid filtration through an oil-bearing rock,” J. Appl. Mech. Tech. Phys., 38, No.6, 963–071 (1997).Google Scholar
  16. 16.
    E. I. Palchikov, S. V. Sukhinin, A. Yu. Burlev, et al., “X-ray tomographic flow visualization of multiphase fluid mixture in porous media,” in: Proc. of the VII Triennial Int. Symp. on Fluid Control, Measurement, and Visualization (Sorrento, Italy, 25–28 Aug., 2003); CD-ROM Proc., ISBN 0-9533991-4-1, Paper No. 101. Publ. Optimage Ltd, Edinburgh; http://www.vsj.or.jp/jov/Vol7No2/Carlomagno.htm.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. I. Bichenkov
    • 1
  • E. I. Palchikov
    • 1
  • S. V. Sukhinin
    • 1
  • A. N. Cheremisin
    • 1
  • A. I. Romanov
    • 1
  • M. A. Romanyuta
    • 1
  • K. S. Seleznev
    • 1
  1. 1.Lavrent'ev Institute of Hydrodynamics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations