Journal of Applied Mechanics and Technical Physics

, Volume 46, Issue 5, pp 697–701 | Cite as

Kinetic Aspect of the Life of Tensile Specimens: A Comparison of Two Approaches

  • V. P. Skripov
  • V. E. Vinogradov


This paper considers two approaches to estimating the life of specimens: kinetic strength theory and homogeneous nucleation theory. Using aluminum as an example, it is shown that homogeneous nucleation theory overestimates the real life of tensile metal specimens by two order of magnitude and gives values close to the theoretical strength of metals. The use of experimental data on the lifetime of a superheated and stretched liquid (hexane) allows one to couple both approaches taking into account the time scale of occurrence of metastability.

Key words

strength theory nucleation theory stretched liquid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press (1980).Google Scholar
  2. 2.
    V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of Solid Strength [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    V. P. Skripov, Metastable Liquid [in Russian], Nauka, Moscow (1972).Google Scholar
  4. 4.
    V. E. Vinogradov and P. A. Pavlov, “Boundary of limiting superheats of n-heptane, ethanol, benzene, and toluene at negative pressures,” Teplofiz. Vysok. Temp., 38, No.3, 402–406 (2000).Google Scholar
  5. 5.
    S. N. Zhurkov and B. N. Narzullaev, “Time dependence of the strength of solids,” Zh. Tekh. Fiz., 23, No.10, 1677–1689 (1953).Google Scholar
  6. 6.
    S. N. Zhurkov and T. P. Sanfirova, “Time-temperature dependence of the strength of pure metals,” Dokl. Akad. Nauk SSSR, 101, No.2, 237–240 (1955).Google Scholar
  7. 7.
    S. N. Zhurkov and T. P. Sanfirova, “Time and temperature dependences of strength,” Fiz. Tverd. Tela, 2, No.6, 1033–1039 (1960).Google Scholar
  8. 8.
    I. S. Grigor’ev and E. Z. Meilikhov (eds.), Physical Quantities: Handbook [in Russian], Energoatomizdat, Moscow (1991).Google Scholar
  9. 9.
    V. E. Vinogradov and P. A. Pavlov, “Liquid boiling-up at negative pressures,” in: The Physics of Heat Transfer in Boiling and Condensation, Proc. Int. Symp. on the Physics of Heat Transfer in Boiling and Condensation (Moscow, Russia, May 23–24, 1997), Moscow Power Engineering Institute, Moscow (1997), pp. 57–60.Google Scholar
  10. 10.
    V. P. Skripov and G. V. Ermakov, “Limiting superheating of liquids as a function of pressure,” Zh. Fiz. Khim., 38, 396–404 (1964).Google Scholar
  11. 11.
    V. E. Vinogradov and P. A. Pavlov, “Continuation of the boundary of limiting superheatings of liquids to the region of negative pressures,” in: 4th Minsk Int. Heat and Mass Transfer Forum, Vol. 5, Lykov Institute of Mass and Heat Transfer, Minsk (2000), pp. 463–467.Google Scholar
  12. 12.
    V. G. Baidakov, A. M. Kaverin, and I. I. Sulla, “Achievable superheating of liquid ethane,” Teplofiz. Vysok. Temp., 27, No.2, 410–412 (1989).Google Scholar
  13. 13.
    P. A. Pavlov, Boiling Dynamics of Severely Superheated Liquids [in Russian], Ural Div., USSR Academy of Sciences, Sverdlovsk (1988).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. P. Skripov
    • 1
  • V. E. Vinogradov
    • 1
  1. 1.Institute of Thermal Physics, Ural DivisionRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations