Journal of Applied Mechanics and Technical Physics

, Volume 46, Issue 5, pp 624–634 | Cite as

Thermomechanical Behavior of Electrically Conducting Solids Exposed to an External Electromagnetic Field

  • B. D. Drobenko


This paper describes a procedure for the mathematical and numerical modeling of the thermomechanical behavior of electrically conducting solid bodies exposed to an external electromagnetic field. The constitutive equations for the electromagnetic field are the Maxwell equations written for the region of the solid body and the ambient medium. The stress-strain state of the solid is described using the relations for nonisothermal elastoplastic flow. The effects of the electromagnetic field on the heat-transfer and deformation processes are taken into account via heat release and ponderomotive forces, respectively. The relations between the electric and magnetic inductions and the corresponding field strengths are considered nonlinear. All physicomechanical parameters of the body material are temperature dependent.

Key words

thermomechanics of electrically conducting solids coupled fields high-temperature induction heating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Chaboudez, S. Clain, R. Glardon, et al., “Numerical modeling in induction heating for axisymmetric geometries,” IEEE Trans. Magn., 33, No.1, 735–745 (1997).CrossRefGoogle Scholar
  2. 2.
    Y. Favennec, V. Labbe, and F. Bay, “Induction heating processes optimization a general optimal control approach,” J. Comput. Phys., 187, 68–94 (2003).CrossRefGoogle Scholar
  3. 3.
    V. Nemkov and R. Goldstein, “Calculater simulation for fundamental study and practical solutions to induction heating problems,” Int. J. Comput. Math. Electr. Electron. Eng. (COMPEL), 22, No.1, 181–191 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Rappaz and M. Swierkosz, “Mathematical modeling and simulation of induction heating processes,” Appl. Math. Comp. Sci., 6, No.2, 207–221 (1996).Google Scholar
  5. 5.
    J. Turowski, Elektrodynamika Techniczna, WNT, Warszawa (1993).Google Scholar
  6. 6.
    A. Gaczkiewicz and Z. Kasperski, “Modele i metody matematyczne w zagadnieniach brzegowych termomechaniki cial przewodzacych,” OW. Politechnika Opolska, Opole (1999).Google Scholar
  7. 7.
    Ya. S. Podstrigach, Ya. I. Burak, A. R. Gachkevich, and L. V. Chernyavskaya, Thermoelasticity of Electrically Conducting Solids [in Russian], Naukiva Dumka, Kiev (1977).Google Scholar
  8. 8.
    G. F. Golovin amd M. M. Zamyatin, High-Frequency Thermal Treatment [in Russian], Mashinostroenie, Leningrad (1990).Google Scholar
  9. 9.
    D. H. Allen and W. E. Heisler, “A theory for analysis of thermoplastic materials,” Comput. Struct., 13, 129–135 (1981).CrossRefGoogle Scholar
  10. 10.
    O. C. Zienkiewicz and R. L. Taylor, Finite Element Method, Vol. 1: The Basis, Butterworth Heinemann, London (2000).Google Scholar
  11. 11.
    O. C. Zienkiewicz, W. L. Wood, and N. W. Nine, “A unified set of single step algorithm,” Int. J. Numer. Methods Eng., 20, 1529–1552 (1984).CrossRefGoogle Scholar
  12. 12.
    T. Skoczkowski and M. Kalus, “The mathematical model of induction heating of ferromagnetic pipes,” IEEE Trans. Magn., No. 3, 2745–2750 (1989).Google Scholar
  13. 13.
    E. R. Khismatulin, E. M. Korolev, V. I. Livshits, et al., High-Pressure Containers and Pipelines: Handbook [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  14. 14.
    A. A. Preobrazhenskii, Magnetic Materials and Units [in Russian], Vysshaya Shkola, Moscow (1976).Google Scholar
  15. 15.
    I. K. Kikoin (ed.), Table of Physical Quantities: Handbook [in Russian], Atomizdat, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • B. D. Drobenko
    • 1
  1. 1.Podstrigach Institute of Applied Problems of Mechanics and MathematicsNational Academy of Sciences of UkraineL’vivUkraine

Personalised recommendations