Asymptotic behavior of the conducting properties of high-contrast media

  • A. G. Kolpakov


The asymptotic-shielding effect and the asymptotic behavior of the conductivity of a medium containing closely spaced, perfectly conducting inclusions. It is proved that in the presence of asymptotic shielding for pairs of adjacent particles, the original continuous problem can be approximated by a finite-dimensional problem.

Key words

shielding effect asymptotic behavior conductivity perfectly conducting inclusions finite-dimensional approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J-L. Lions, “Some computational aspects of the homogenization method in composite materials,” in: Computational Methods in Mathematics, Geophysics, and Optimum Control [Russian translation], Nauka, Novosibirsk (1978), pp. 5–19.Google Scholar
  2. 2.
    L. Borcea and G. Papanicolaou, “Network approximation for transport properties of high contrast materials,” SIAM J. Appl. Math., 58, No. 2, 501–539 (1998).CrossRefGoogle Scholar
  3. 3.
    L. V. Berlyand and A. G. Kolpakov, “Network approximation in the limit of small interparticle distance of the effective properties of a high contrast random dispersed composite,” Arch. Rational Mech. Anal., No. 3, 179–227 (2001).Google Scholar
  4. 4.
    J. C. Maxwell, Treatise on Electricity and Magnetismus, Vol. 1, Oxford Univ. Press, Oxford (1873).Google Scholar
  5. 5.
    J. B. Keller, “Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders,” J. Appl. Phys., 34, No. 4, 991–993 (1963).CrossRefGoogle Scholar
  6. 6.
    I. E. Tamm, Foundations of Electricity Theory [in Russian], Nauka, Moscow (1976).Google Scholar
  7. 7.
    W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill, New York-Toronto-London (1950).Google Scholar
  8. 8.
    N. N. Medvedev, Vorornoi-Delaunay Method and the Structure of Noncrystalline Systems [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2000).Google Scholar
  9. 9.
    O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptical Equations [in Russian], Nauka, Moscow (1964).Google Scholar
  10. 10.
    V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1976).Google Scholar
  11. 11.
    M. Sahimi, Heterogeneous Materials, Springer-Verlag, Berlin-Heidelberg-New York (2003).Google Scholar
  12. 12.
    Yu. N. Rabotnov, Mechanics of Deformable Solids [in Russian], Nauka, Moscow (1979).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. G. Kolpakov
    • 1
  1. 1.Novosibirsk State Architecturally-Building UniversityNovosibirsk

Personalised recommendations