Advertisement

Aerosol aspiration into a cylindrical sampler from a low-velocity downward flow and from calm air

  • M. V. Vanyunina
  • R. S. Galeev
  • Sh. Kh. Zaripov
  • É. V. Skvortsov
Article
  • 17 Downloads

Abstract

The problem of aerosol aspiration into a two-dimensional cylindrical sampler from a low-velocity downward flow and from calm air is solved. A simple analytical model for the velocity field of the carrier medium in the vicinity of the sampler with allowance for the finite size of the input orifice is proposed. Parametric studies of the aspiration factor as a function of the Stokes number for different ratios of the free-stream and aspiration velocities and different gravity-induced sedimentation velocities for two positions of the sampler are performed. Sedimentation of particles on the lower side of the cylinder for the sampler with a downward-oriented orifice is discussed.

Key words

aspiration potential flow cylindrical sampler 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. H. Vincent, Aerosol Sampling: Science and Practice, Wiley and Sons, London (1989).Google Scholar
  2. 2.
    V. M. Voloshchuk, Introduction into Hydrodynamics of Coarsely Disperse Aerosols [in Russian], Gidrometeoizdat, Leningrad (1971).Google Scholar
  3. 3.
    S. J. Dunnett and D. B. Ingham, The Mathematics of Blunt Body Sampling. Lecture Notes in Engineering, Springer-Verlag, Berlin (1988).Google Scholar
  4. 4.
    C. N. Davies, “Movement of dust particles near a horizontal cylinder containing a sampling orifice,” Brit. J. Appl. Phys., 18, 653–656 (1967).Google Scholar
  5. 5.
    S. J. Dunnett and D. B. Ingham, “A mathematical theory to two-dimensional blunt body sampling,” J. Aerosol Sci., 17, No. 5, 839–853 (1986).Google Scholar
  6. 6.
    I. P. Chung and D. Dunn-Rankin, “Numerical simulations of two-dimensional blunt body sampling in viscous flow,” J. Aerosol Sci., 23, 217–232 (1992).Google Scholar
  7. 7.
    I. P. Chung and D. Dunn-Rankin, “The effects of bluntness and orientation on two dimensional samplers in calm air,” Aerosol Sci. Technol., 19, 371–380 (1993).Google Scholar
  8. 8.
    S. J. Dunnett, “Particle motion in the vicinity of a bulky sampling head operating in calm air,” Aerosol Sci. Technol., 36, 308–317 (2002).Google Scholar
  9. 9.
    I. P. Chung and D. Dunn-Rankin, “Experimental investigation of air flow around blunt aerosol samplers,” J. Aerosol Sci., 28, No. 2, 289–305 (1997).Google Scholar
  10. 10.
    I. P. Chung, T. Trinh, and D. Dunn-Rankin, “Experimental investigation of a two-dimensional cylindrical sampler,” J. Aerosol Sci., 25, No. 5, 935–955 (1994).Google Scholar
  11. 11.
    S. J. Dunnett and J. H. Vincent, “A mathematical study of aerosol sampling by an idealised blunt sampler oriented at an angle to the wind: The role of gravity,” J. Aerosol Sci., 31, 1187–1203 (2000).Google Scholar
  12. 12.
    R. S. Galeev and S. K. Zaripov, “Theoretical study of aerosol sampling by an idealised sampler in calm air,” J. Aerosol Sci., 34, No. 9, 1135–1150 (2003).Google Scholar
  13. 13.
    M. A. Lavrent’ev and V. V. Shabat, Methods of the Theory of Functions of Complex Variables [in Russian], Nauka, Moscow (1973).Google Scholar
  14. 14.
    R. S. Galeev and S. K. Zaripov, “Deposition of aerosol particles on a sphere: the role of gravity,” Aerosol Sci. Technol., 37, 325–329 (2003).Google Scholar
  15. 15.
    S. A. Grinshpun, G. N. Lipatov, and A. G. Sutugin, “Sampling errors in cylindrical nozzles,” Aerosol Sci. Technol., No. 12, 716–740 (1990).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. V. Vanyunina
    • 1
  • R. S. Galeev
    • 1
  • Sh. Kh. Zaripov
    • 1
  • É. V. Skvortsov
    • 1
  1. 1.Chebotarev Institute of Mathematics and MechanicsKazan’ State University, Kazan’

Personalised recommendations