Evaluation of Appetite-Regulating Hormones ın Young Children with Autism Spectrum Disorder

Abstract

This study aimed to investigate the role of leptin, ghrelin, neuropeptide Y, and nesfatin-1 in young children with autism spectrum disorder (ASD). A total of 44 children with ASD and 44 healthy controls aged 18–60 months were included. Plasma levels of hormones were measured using commercial enzyme-linked immunosorbent assay kits. Plasma leptin and ghrelin levels were significantly higher in the ASD group than in the control group. However, no significant difference for plasma neuropeptide Y and nesfatin-1 levels was detected between the groups. No relation was found between the severity of ASD symptoms, severity of eating problems, and plasma levels of hormones. Leptin and ghrelin may play a potential role in the pathogenesis of ASD.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Adams, J. B., Audhya, T., McDonough-Means, S., Rubin, R. A., Quig, D., Geis, E., et al. (2011). Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutrition & Metabolism, 8(1), 34.

    Google Scholar 

  2. Adamsen, D., Ramaekers, H. H. T., Britschgi, C., Rüfenacht, V., Meili, D., et al. (2014). Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Molecular Autism, 13(5), 43.

    Google Scholar 

  3. Algul, S., & Ozcelik, O. (2018). Evaluating the levels of nesfatin-1 and ghrelin hormones in patients with moderate and severe major depressive disorders. Psychiatry Investigation, 15(2), 214–218.

    PubMed  Google Scholar 

  4. Al-Zaid, F. S., Alhader, A. A., & Al-Ayadhi, L. Y. (2014). Altered ghrelin levels in boys with autism: A novel finding associated with hormonal dysregulation. Scientific Reports, 26(4), 6478.

    Google Scholar 

  5. American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Philadelphia: American Psychiatric Association.

    Google Scholar 

  6. Ashwood, P., Anthony, A., Torrente, F., & Wakefield, A. J. (2004). Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: Mucosal immune activation and reduced counter regulatory interleukin-10. Journal of Clinical Immunology, 24, 664–673.

    PubMed  Google Scholar 

  7. Ashwood, P., Kwong, C., Hansen, R., Hertz-Picciotto, I., Croen, L., Krakowiak, P., et al. (2008). Brief report: Plasma leptin levels are elevated in autism: Association with early onset phenotype? Journal of Autism and Developmental Disorders, 38, 169–175.

    PubMed  Google Scholar 

  8. Bai, J., Yang, F., Dong, L., & Zheng, Y. (2017). Ghrelin protects human lens epithelial cells against oxidative stress-induced damage. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2017/1910450.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blardi, P., de Lalla, A., Ceccatelli, L., Vanessa, G., Auteri, A., & Hayek, J. (2010). Variations of plasma leptin and adiponectin levels in autistic patients. Neuroscience Letters, 479, 54–57.

    PubMed  Google Scholar 

  10. Bourgeron, T. (2009). A synaptic trek to autism. Current Opinion in Neurobiology, 19(2), 231–234.

    PubMed  Google Scholar 

  11. Breij, L. M., Mulder, M. T., van Vark-van der Zee, L. C., & Hokken-Koelega, A. C. S. (2017). Appetite regulating hormones in early life and relationships with type of feeding and body composition in healthy term infants. European Journal of Nutrition, 56, 1725–1732.

    PubMed  Google Scholar 

  12. Brothers, S. P., & Wahlestedt, C. (2010). Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Molecular Medicine, 2, 429–439.

    PubMed  PubMed Central  Google Scholar 

  13. Cannon, A. M., Kakulas, F., Hepworth, A. R., Lai, C. T., Hartmann, P. E., & Geddes, D. T. (2015). The effects of leptin on breastfeeding behaviour. International Journal of Environmental Research and Public Health, 12(10), 12340–12355.

    PubMed  PubMed Central  Google Scholar 

  14. Castro, K., Facciolib, L. S., Perryb, I. S., & Riesgo, R. S. (2019). Leptin and adiponectin correlations with body composition and lipid profile in children with autism spectrum disorder. BioRxiv. https://doi.org/10.1101/621003.

    Article  Google Scholar 

  15. Center for Disease Control and Prevention. (2014). Prevalence of autism spectrum disorders among children age 8 years-Autism and Developmental Disabilities Monitoring Network, 11 sites, United States 2010. MMWR Surveillance Summaries, 63, 1–21.

    Google Scholar 

  16. Cheung, C. K., & Wu, J. C. (2013). Role of ghrelin in the pathophysiology of gastrointestinal disease. Gut Liver, 7(5), 505–512.

    PubMed  PubMed Central  Google Scholar 

  17. Chowdhury, E. A., Richardson, J. D., Tsintzas, K., Thompson, D., & Betts, J. A. (2016). Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults. International Journal of Obesity (Lond), 40(2), 305–311.

    Google Scholar 

  18. Clark, J. T., Kalra, P. S., Crowley, W. R., & Kalra, S. P. (1984). Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology, 115(1), 427–429.

    PubMed  Google Scholar 

  19. Considine, R. V., Considine, E. L., Williams, C. J., Nyce, M. R., Magosin, S. A., Bauer, T. L., et al. (1995). Evidence against either a premature stop codon or the absence of obese gene mRNA in human obesity. Journal of Clinical Investigation, 95, 2986–2988.

    PubMed Central  Google Scholar 

  20. Crujeiras, A. B., Carreira, M. C., Cabia, B., Andrade, S., Amil, M., & Casanueva, F. F. (2015). Leptin resistance in obesity: An epigenetic landscape. Life Sciences, 1(140), 57–63.

    Google Scholar 

  21. Cummings, D. E., Purnell, J. Q., Frayo, R. S., Schmidova, K., Wisse, B. E., & Weigle, D. S. (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, 50, 1714–1719.

    PubMed  Google Scholar 

  22. Curtin, C., Anderson, S. E., Must, A., & Bandini, L. (2010). The prevalence of obesity in children with autism: A secondary data analysis using nationally representative data from the National Survey of Children's Health. BMC Pediatrics, 23(10), 11.

    Google Scholar 

  23. DeLong, G. R. (1992). Autism, amnesia, hippocampus, and learning. Neuroscience and Biobehavioral Reviews, 16, 63–70.

    PubMed  Google Scholar 

  24. Diano, S., Farr, S. A., Benoit, S. C., McNay, E. C., da Silva, I., Horvath, B., et al. (2006). Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neuroscience, 9(3), 381–388.

    PubMed  Google Scholar 

  25. Dixit, V. D., Schaffer, E. M., Pyle, R. S., Collins, G. D., Sakthivel, S. K., Palaniappan, R., et al. (2004). Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. Journal of Clinical Investigation, 114(1), 57–66.

    PubMed Central  Google Scholar 

  26. Dodd, G. T., Worth, A. A., Nunn, N., Korpal, A. K., Bechtold, D. A., Allison, M. B., et al. (2014). The thermogenic effect of leptin is dependent on a distinct population of prolactin releasing peptide neurons in the dorsomedial hypothalamus. Cell Metabolism, 20, 639–649.

    PubMed  PubMed Central  Google Scholar 

  27. Doenyas, C. (2018). Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience, 15(374), 271–286.

    Google Scholar 

  28. Dore, R., Levata, L., Lehnert, H., & Schulz, C. (2017). Nesfatin-1: Functions and physiology of a novel regulatory peptide. Journal of Endocrinology, 232(1), R45–R65.

    Google Scholar 

  29. Dzaja, A., Dalal, M. A., Himmerich, H., Uhr, M., Pollmächer, T., & Schuld, A. (2004). Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. American Journal of Physiology, Endocrinology and Metabolism, 286(6), E963–E967.

    PubMed  Google Scholar 

  30. Emmerzaal, T. L., & Kozicz, T. (2013). Nesfatin-1; Implication in stress and stress-associated anxiety and depression. Current Pharmaceutical Design, 19, 6941–6948.

    PubMed  Google Scholar 

  31. Ghozy, S., Tran, L., Naveed, S., Quynh, T. T. H., Helmy Zayan, A., Waqas, A., et al. (2020). Association of breastfeeding status with risk of autism spectrum disorder: A systematic review, dose-response analysis and meta-analysis. Asian Journal of Psychiatry, 48, 101916.

    PubMed  Google Scholar 

  32. Gibson, L. A., Alava, M. H., Kelly, M. P., & Campbell, M. J. (2017). The effects of breastfeeding on childhood BMI: A propensity score matching approach. Journal of Public Health (Oxf), 39(4), e152–e160.

    Google Scholar 

  33. Gunay, H., Tutuncu, R., Aydin, S., Dag, E., & Abasli, D. (2012). Decreased plasma nesfatin-1 levels in patients with generalized anxiety disorder. Psychoneuroendocrinology., 37, 1949–1953.

    PubMed  Google Scholar 

  34. Hahn-Holbrook, J., Saxbe, D., Bixby, C., Steele, C., & Glynn, L. (2019). Human milk as "Chrononutrition": Implications for child health and development. Pediatric Research, 85(7), 936–942.

    PubMed  Google Scholar 

  35. Hasan, Z. A., Al-Kafaji, G., Al-Sherawi, M. I., Razzak, R. A., Eltayeb, D., Skrypnk, C., et al. (2019). Investigation of serum levels of leptin, ghrelin and growth hormone in bahraini children with autism. International Archives of Translational Medicine, 5, 007.

    Google Scholar 

  36. Hassan, M. A. E., Delvin, E., Elnenaei, M. O., & Hoffman, B. (2018). Diurnal rhythm in clinical chemistry: An underrated source of variation. Critical Reviews in Clinical Laboratory Sciences. https://doi.org/10.1080/10408363.2018.1519522.

    Article  Google Scholar 

  37. Heilig, M. (2004). The NPY system in stress, anxiety and depression. Neuropeptides, 38(4), 213–224.

    PubMed  Google Scholar 

  38. Illnerova, H., Buresova, M., & Presl, J. (1993). Melatonin rhythm in human milk. Journal of Clinical Endocrinology and Metabolism, 77, 838–841.

    PubMed  Google Scholar 

  39. Jyonouchi, H., Sun, S., & Itokazu, N. (2002). Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology, 46, 76–84.

    PubMed  Google Scholar 

  40. Kalies, H., Heinrich, J., Borte, M., Schaaf, B., Berg, A. V., Kries, R. V., et al. (2005). The effect of breastfeeding on weight gain in infants: Results of a birth cohort study. European Journal of Medical Research, 10(1), 36–42.

    PubMed  Google Scholar 

  41. Kim, T. W., Jeong, J. H., & Hong, S. C. (2015). The impact of sleep and circadian disturbance on hormones and metabolism. International Journal of Endocrinology, 2015, 591729.

    PubMed  PubMed Central  Google Scholar 

  42. Krug, D. A., Arick, J., & Almond, P. (1980). Behavior checklist for identifying severely handicapped individuals with high levels of autistic behavior. Journal of Child Psychology and Psychiatry, 21, 221–229.

    PubMed  Google Scholar 

  43. La Cava, A. (2017). Leptin in inflammation and autoimmunity. Cytokine, 98, 51–58.

    PubMed  PubMed Central  Google Scholar 

  44. La Cava, A., & Matarese, G. (2004). The weight of leptin in immunity. Nature Reviews Immunology, 4(5), 371–379.

    PubMed  Google Scholar 

  45. Loh, K., Herzog, H., & Shi, Y. C. (2015). Regulation of energy homeostasis by the NPY system. Trends in Endocrinology and Metabolism, 26(3), 125–135.

    PubMed  Google Scholar 

  46. Maffei, M., Halaas, J., Ravussin, E., Pratley, R. E., Lee, G. H., Zhang, Y., et al. (1995). Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Medicine, 1, 1155–1161.

    PubMed  Google Scholar 

  47. Morin, L. P. (2013). Neuroanatomy of the extended circadian rhythm system. Experimental Neurology, 243, 4–20.

    PubMed  Google Scholar 

  48. Nozhenko, Y., Asnani-Kishnani, M., Rodríguez, A. M., & Palou, A. (2015). Milk leptin surge and biological rhythms of leptin and other regulatory proteins in breastmilk. PLoS ONE, 10(12), e0145376.

    PubMed  PubMed Central  Google Scholar 

  49. Obermann-Borst, S. A., Eilers, P. H., Tobi, E. W., de Jong, F. H., Slagboom, P. E., Heijmans, B. T., et al. (2013). Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatric Research, 74(3), 344–349.

    PubMed  Google Scholar 

  50. Oh-I, S., Shimizu, H., Satoh, T., Okada, S., Adachi, S., Inoue, K., et al. (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature, 443, 709–712.

    PubMed  Google Scholar 

  51. Oury, F., & Karsenty, G. (2011). Towards a serotonin-dependent leptin roadmap in the brain. Trends in Endocrinology and Metabolism, 22(9), 382–387.

    PubMed  Google Scholar 

  52. Ozsavci, D., Ersahin, M., Sener, A., et al. (2011). The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats. Neurosurgery., 68, 1699–1708.

    PubMed  Google Scholar 

  53. Ozturk, C. C., Oktay, S., Yuksel, M., Akakin, D., Yarat, A., & Kasimay, C. O. (2015). Anti-inflammatory effects of nesfatin-1 in rats with acetic acid—Induced colitis and underlying mechanisms. Journal of Physiology and Pharmacology, 66(5), 741–750.

    PubMed  Google Scholar 

  54. Pinato, L., Galina Spilla, C. S., Markus, R. P., & da Silveira, C.-M. (2019). Dysregulation of circadian rhythms in autism spectrum disorders. Current Pharmaceutical Design, 25(41), 4379–4393.

    PubMed  Google Scholar 

  55. Pinsky, M., Rauch, M., Abbas, A., Sharabi-Nov, A., Tamir, S., & Gutman, R. (2017). Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge. PLoS ONE, 12(11), e0188658.

    PubMed  PubMed Central  Google Scholar 

  56. Raghavan, R., Zuckerman, B., Hong, X., Wang, G., Ji, Y., Paige, D., et al. (2018). Fetal and infancy growth pattern, cord and early childhood plasma leptin, and development of autism spectrum disorder in the Boston birth cohort. Autism Research, 11(10), 1416–1431.

    PubMed  PubMed Central  Google Scholar 

  57. Rodrigues, D. H., Rocha, N. P., Sousa, L. F., Barbosa, I. G., Kummer, A., & Teixeira, A. L. (2014). Changes in adipokine levels in autism spectrum disorders. Neuropsychobiology., 69(1), 6–10.

    PubMed  Google Scholar 

  58. Sah, R., Ekhator, N. N., Strawn, J. R., Sallee, F. R., Baker, D. G., Horn, P. S., et al. (2009). Low cerebrospinal fluid neuropeptide Y concentrations in posttraumatic stress disorder. Biological Psychiatry, 66(7), 705–707.

    PubMed  PubMed Central  Google Scholar 

  59. Sajdyk, T. J., Shekhar, A., & Gehlert, D. R. (2004). Interactions between NPY and CRF in the amygdala to regulate emotionality. Neuropeptides., 38(4), 225–234.

    PubMed  Google Scholar 

  60. Sato, T., Fukue, Y., Teranishi, H., Yoshida, Y., & Kojima, M. (2005). Molecular forms of hypothalamic ghrelin and its regulation by fasting and 2-deoxy-d-glucose administration. Endocrinology, 146, 2510–2516.

    PubMed  Google Scholar 

  61. Schopler, E., Reichler, R. J., DeVellis, R. F., & Daly, K. (1980). Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). Journal of Autism and Developmental Disorders, 10, 91–103.

    PubMed  Google Scholar 

  62. Sharp, W. G., Berry, R. C., McCracken, C., Nuhu, N. N., Marvel, E., Saulnier, C. A., et al. (2013). Feeding problems and nutrient intake in children with autism spectrum disorders: A meta-analysis and comprehensive review of the literature. Journal of Autism and Developmental Disorders, 43(9), 2159–2173.

    PubMed  Google Scholar 

  63. Sherwood, W. B., Bion, V., Lockett, G. A., Ziyab, A. H., Soto-Ramírez, N., Mukherjee, N., et al. (2019). Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children. Clinical Epigenetics, 11(1), 128.

    PubMed  PubMed Central  Google Scholar 

  64. Shimmura, C., Suda, S., Tsuchiya, K. J., Hashimoto, K., Ohno, K., Matsuzaki, H., et al. (2011). Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLoS ONE, 6, e25340.

    PubMed  PubMed Central  Google Scholar 

  65. Silva, A. P., Pinheiro, P. S., Carvalho, A. P., Carvalho, C. M., Jakobsen, B., Zimmer, J., et al. (2003). Activation of neuropeptide Y receptors is neuroprotective against excitotoxicity in organotypic hippocampal slice cultures. The FASEB Journal, 17(9), 1118–1120.

    PubMed  Google Scholar 

  66. Singh, K., & Zimmerman, A. W. (2015). Sleep in autism spectrum disorder and attention deficit hyperactivity disorder. Seminars in Pediatric Neurology, 22(2), 113–125.

    PubMed  Google Scholar 

  67. Soke, G. N., Maenner, M., Windham, G., Moody, E., Kaczaniuk, J., DiGuiseppi, C., et al. (2019). Association between breastfeeding initiation and duration and autism spectrum disorder in preschool children enrolled in the study to explore early development. Autism Research, 12(5), 816–829.

    PubMed  PubMed Central  Google Scholar 

  68. Stengel, A., Mori, M., & Tache, Y. (2013). The role of nesfatin-1 in the regulation of food intake and body weight: Recent developments and future endeavors. Obesity Reviews, 14, 859–870.

    PubMed  Google Scholar 

  69. Sucuoğlu, B., Öktem, F., & Gökler, B. (1996). Otistik çocukların değerlendirilmesinde kullanılan ölçeklere ilişkin bir çalışma. Psikiyatri Psikoloji Psikofarmakoloji (3P) Dergisi, 4(2), 116–121.

    Google Scholar 

  70. Tseng, P. T., Chen, Y. W., Stubbs, B., Carvalho, A. F., Whiteley, P., Tang, C. H., et al. (2019). Maternal breastfeeding and autism spectrum disorder in children: A systematic review and meta-analysis. Nutritional Neuroscience, 22(5), 354–362.

    PubMed  Google Scholar 

  71. Vaisse, C., Halaas, J. L., Horvath, C. M., Darnell, J. E., Jr., Stoffel, M., & Friedman, J. M. (1996). Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nature Genetics, 14, 95–97.

    PubMed  Google Scholar 

  72. Weibert, E., Hofmann, T., & Stengel, A. (2019). Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology., 100, 58–66.

    PubMed  Google Scholar 

  73. Weibert, E., & Stengel, A. (2017). The X/A-like cell revisited—Spotlight on the peripheral effects of NUCB2/nesfatin-1 and ghrelin. Journal of Physiology and Pharmacology, 68, 497–520.

    PubMed  Google Scholar 

  74. White, J. D. (1993). Neuropeptide Y: A central regulator of energy homeostasis. Regulatory Peptides, 49(2), 93–107.

    PubMed  Google Scholar 

  75. Wu, G., Feder, A., Wegener, G., Bailey, C., Saxena, S., Charney, D., et al. (2011). Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opinion on Therapeutic Targets, 15(11), 1317–1331.

    PubMed  Google Scholar 

  76. Wu, Y. Y., Lye, S., & Briollais, L. (2017). The role of early life growth development, the FTO gene and exclusive breastfeeding on child BMI trajectories. International Journal of Epidemiology, 46(5), 1512–1522.

    PubMed  PubMed Central  Google Scholar 

  77. Yamashita, Y., Makinodan, M., Toritsuka, M., Yamauchi, T., Ikawa, D., Kimoto, S., et al. (2019). Anti-inflammatory effect of ghrelin in lymphoblastoid cell lines from children with autism spectrum disorder. Front Psychiatry, 26(10), 152.

    Google Scholar 

  78. Yilmaz, R., Haluk, E., & Erkorkmaz, U. (2011). Adaptation study of the Turkish Children’s Eating Behavior Questionnaire. Anadolu Psikiyatri Derg (in Turkish), 12(4), 287–294.

    Google Scholar 

  79. Yilmaz-Irmak, T., Tekinsav-Sutcu, S., Aydin, A., & Sorias, O. (2007). An investigation of validity and reliability of Autism Behavior Checklist (ABC). Turkish Journal of Child and Adolescent Mental Health (in Turkish)., 14(1), 13–23.

    Google Scholar 

  80. Zheng, Z., Zhang, L., Li, S., Zhao, F., Wang, Y., Huang, L., et al. (2017). Association among obesity, overweight and autism spectrum disorder: A systematic review and meta-analysis. Scientific Reports, 7(1), 11697.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the patients and families who participated in this study. This study adapted from the dissertation of Dr. Çağla Çelikkol Sadıç.

Funding

Funding for this study was provided by a grant from the Scientific Research Project Coordination Unit of Necmettin Erbakan University (Project No: 181518012).

Author information

Affiliations

Authors

Contributions

ÇÇS, AB, İK, MBO and TB conceived of the study and participated in its design and coordination. ÇÇS and AB made the diagnosis of children with autism spectrum disorder and checked the suitability of these children for the study. AB, MBO and TB supervised the data collection. ÇÇS and AB drafted the manuscript. AB and İK performed statistical analysis of data. All author read and approved the final manuscript.

Corresponding author

Correspondence to Çağla Çelikkol Sadıç.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çelikkol Sadıç, Ç., Bilgiç, A., Kılınç, İ. et al. Evaluation of Appetite-Regulating Hormones ın Young Children with Autism Spectrum Disorder. J Autism Dev Disord 51, 632–643 (2021). https://doi.org/10.1007/s10803-020-04579-0

Download citation

Keywords

  • Autism
  • Leptin
  • Ghrelin
  • Neuropeptide Y
  • Nesfatin-1
  • Early childhood