Abstract
We examined whether functional and structural variability in the primary visual area (V1) correlated with autism traits. Twenty-nine participants (16 males; MAge = 26.4 years, SDAge = 4.0 years) completed the autism-spectrum quotient (AQ) questionnaire prior to a magnetic resonance imaging session. The total AQ scores was used to assess the degree of self-reported autism traits. The average functional activation in V1 to visual stimulation and its average grey-matter thickness were calculated. There were no correlations between functional activation in V1 and autism traits. Conversely, grey-matter thickness of the left but not the right V1 correlated with autism traits. We conclude that structural changes in the left V1 could be a marker for the presence of autism traits.
This is a preview of subscription content, access via your institution.





References
American Psychiatric Association. (2013). DSM-V: Diagnostic and statistical manual of mental disorders, 5th edition. Washington: DC: American Psychiatric Publishing, Inc.
Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., & Zilles, K. (2000). Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage, 11(1), 66–84. https://doi.org/10.1006/nimg.1999.0516.
Ashwin, E., Ashwin, C., Rhydderch, D., Howells, J., & Baron-Cohen, S. (2009). Eagle-eyed visual acuity: An experimental investigation of enhanced perception in autism. Biological Psychiatry, 65(1), 17–21. https://doi.org/10.1016/j.biopsych.2008.06.012.
Barnea-Goraly, N., Lotspeich, L. J., & Reiss, A. L. (2010). Similar white matter aberrations in children with autism and their unaffected siblings: A diffusion tensor imaging study using tract-based spatial statistics. Archives of General Psychiatry, 67(10), 1052–1060. https://doi.org/10.1001/archgenpsychiatry.2010.123.
Baron-Cohen, S., Ring, H., Chitnis, X., Wheelwright, S., Gregory, L., Williams, S., et al. (2006). fMRI of parents of children with Asperger syndrome: A pilot study. Brain and Cognition, 61(1), 122–130. https://doi.org/10.1016/j.bandc.2005.12.011.
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5–17. https://doi.org/10.1023/a:1005653411471.
Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Progress in Neurobiology, 134, 140–160. https://doi.org/10.1016/j.pneurobio.2015.09.007.
Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128(Pt 10), 2430–2441. https://doi.org/10.1093/brain/awh561.
Bezgin, G., Lewis, J. D., & Evans, A. C. (2018). Developmental changes of cortical white-gray contrast as predictors of autism diagnosis and severity. Transl Psychiatry, 8(1), 249. https://doi.org/10.1038/s41398-018-0296-2.
Billeci, L., Calderoni, S., Conti, E., Gesi, C., Carmassi, C., Dell'Osso, L., et al. (2016). The broad autism (endo)phenotype: Neurostructural and neurofunctional correlates in parents of individuals with autism spectrum disorders. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2016.00346.
Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16(9), 551–563. https://doi.org/10.1038/nrn3992.
Brainard, D. H. (2011). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Cheung, C., Chua, S. E., Cheung, V., Khong, P. L., Tai, K. S., Wong, T. K. W., et al. (2009). White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. Journal of Child Psychology and Psychiatry, 50(9), 1102–1112. https://doi.org/10.1111/j.1469-7610.2009.02086.x.
Chouinard, P. A., Royals, K. A., Landry, O., & Sperandio, I. (2018). The Shepard illusion is reduced in children with an autism spectrum disorder because of perceptual rather than attentional mechanisms. Frontiers in Psychology, 9, 2452. https://doi.org/10.3389/fpsyg.2018.02452.
Chouinard, P. A., Unwin, K. L., Landry, O., & Sperandio, I. (2016). Susceptibility to optical illusions varies as a function of the autism-spectrum quotient but not in ways predicted by local-global biases. Journal of Autism and Developmental Disorders, 46(6), 2224–2239. https://doi.org/10.1007/s10803-016-2753-1.
Dawson, G., Warrenburg, S., & Fuller, P. (1982). Cerebral lateralization in individuals diagnosed as autistic in early-childhood. Brain and Language, 15(2), 353–368. https://doi.org/10.1016/0093-934x(82)90065-7.
Dumoulin, S. O., Hoge, R. D., Baker, C. L., Jr., Hess, R. F., Achtman, R. L., & Evans, A. C. (2003). Automatic volumetric segmentation of human visual retinotopic cortex. Neuroimage, 18(3), 576–587. https://doi.org/10.1016/s1053-8119(02)00058-7.
Engel, S. A., Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7(2), 181–192. https://doi.org/10.1093/cercor/7.2.181.
Gebauer, L., Foster, N. E. V., Vuust, P., & Hyde, K. L. (2015). Is there a bit of autism in all of us? Autism spectrum traits are related to cortical thickness differences in both autism and typical development. Research in Autism Spectrum Disorders, 13–14, 8–14. https://doi.org/10.1016/j.rasd.2014.12.013.
Greimel, E., Schulte-Ruther, M., Kircher, T., Kamp-Becker, I., Remschmidt, H., Fink, G. R., et al. (2010). Neural mechanisms of empathy in adolescents with autism spectrum disorder and their fathers. Neuroimage, 49(1), 1055–1065. https://doi.org/10.1016/j.neuroimage.2009.07.057.
Hadjikhani, N., Chabris, C. F., Joseph, R. M., Clark, J., McGrath, L., Aharon, I., et al. (2004). Early visual cortex organization in autism: An fMRI study. NeuroReport, 15(2), 267–270. https://doi.org/10.1097/01.wnr.0000107523.38715.fa.
Hier, D. B., Lemay, M., & Rosenberger, P. B. (1979). Autism and unfavorable left-right asymmetries of the brain. Journal of Autism and Developmental Disorders, 9(2), 153–159. https://doi.org/10.1007/Bf01531531.
Hyde, K. L., Samson, F., Evans, A. C., & Mottron, L. (2010). Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Human Brain Mapping, 31(4), 556–566. https://doi.org/10.1002/hbm.20887.
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford: Oxford University Press.
Keehn, B., Brenner, L., Palmer, E., Lincoln, A. J., & Muller, R. A. (2008). Functional brain organization for visual search in ASD. Journal of the International Neuropsychological Society, 14(6), 990–1003. https://doi.org/10.1017/S1355617708081356.
Kemner, C., van Ewijk, L., van Engeland, H., & Hooge, I. (2008). Brief report: Eye movements during visual search tasks indicate enhanced stimulus discriminability in subjects with PDD. Journal of Autism and Developmental Disorders, 38(3), 553–557. https://doi.org/10.1007/s10803-007-0406-0.
Kennedy, K. M., Rodrigue, K. M., Bischof, G. N., Hebrank, A. C., Reuter-Lorenz, P. A., & Park, D. C. (2015). Age trajectories of functional activation under conditions of low and high processing demands: An adult lifespan fMRI study of the aging brain. Neuroimage, 104, 21–34. https://doi.org/10.1016/j.neuroimage.2014.09.056.
Koh, H. C., Milne, E., & Dobkins, K. (2010). Spatial contrast sensitivity in adolescents with autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(8), 978–987. https://doi.org/10.1007/s10803-010-0953-7.
Lainhart, J. E. (2015). Brain imaging research in autism spectrum disorders: In search of neuropathology and health across the lifespan. Current Opinion in Psychiatry, 28(2), 76–82. https://doi.org/10.1097/Yco.0000000000000130.
Lainhart, J. E., & Lange, N. (2011). The biological broader autism phenotype. In G. D. D. G. Amaral & D. H. Geschwind (Eds.), Autism spectrum disorders. New York: Oxford University Press, Inc.
Landry, O., & Chouinard, P. A. (2016). Why we should study the broader autism phenotype in typically developing populations. Journal of Cognition and Development, 17(4), 584–595. https://doi.org/10.1080/15248372.2016.1200046.
Loth, E., Garrido, L., Ahmad, J., Watson, E., Duff, A., & Duchaine, B. (2018). Facial expression recognition as a candidate marker for autism spectrum disorder: How frequent and severe are deficits? Molecular Autism. https://doi.org/10.1186/s13229-018-0187-7.
Macdonald, H., Rutter, M., Howlin, P., Rios, P., Leconteur, A., Evered, C., et al. (1989). Recognition and expression of emotional cues by autistic and normal adults. Journal of Child Psychology and Psychiatry and Allied Disciplines, 30(6), 865–877. https://doi.org/10.1111/j.1469-7610.1989.tb00288.x.
Manjaly, Z. M., Bruning, N., Neufang, S., Stephan, K. E., Brieber, S., Marshall, J. C., et al. (2007). Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents. Neuroimage, 35(1), 283–291. https://doi.org/10.1016/j.neuroimage.2006.11.036.
Marco, E. J., Hinkley, L. B. N., Hill, S. S., & Nagarajan, S. S. (2011). Sensory processing in autism: A review of neurophysiologic findings. Pediatric Research, 69(5), 48r–54r. https://doi.org/10.1203/PDR.0b013e3182130c54.
O'Riordan, M. A. (2004). Superior visual search in adults with autism. Autism, 8(3), 229–248. https://doi.org/10.1177/1362361304045219.
Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., et al. (1992). Intrinsic signal changes accompanying sensory stimulation—Functional brain mapping with magnetic-resonance-imaging. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5951–5955. https://doi.org/10.1073/pnas.89.13.5951.
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.
Pellicano, E., & Burr, D. (2012). When the world becomes 'too real': A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510. https://doi.org/10.1016/j.tics.2012.08.009.
Peterson, D., Mahajan, R., Crocetti, D., Mejia, A., & Mostofsky, S. (2015). Left-hemispheric microstructural abnormalities in children with high-functioning autism spectrum disorder. Autism Research, 8(1), 61–72. https://doi.org/10.1002/aur.1413.
Peterson, E., Schmidt, G. L., Tregellas, J. R., Winterrowd, E., Kopelioff, L., Hepburn, S., et al. (2006). A voxel-based morphometry study of gray matter in parents of children with autism. NeuroReport, 17(12), 1289–1292. https://doi.org/10.1097/01.wnr.0000233087.15710.87.
Robertson, C. E., Thomas, C., Kravitz, D. J., Wallace, G. L., Baron-Cohen, S., Martin, A., et al. (2014). Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain, 137(Pt 9), 2588–2599. https://doi.org/10.1093/brain/awu189.
Ruzich, E., Allison, C., Smith, P., Watson, P., Auyeung, B., Ring, H., et al. (2015). Measuring autistic traits in the general population: A systematic review of the Autism-Spectrum Quotient (AQ) in a nonclinical population sample of 6,900 typical adult males and females. Mol Autism, 6, 2. https://doi.org/10.1186/2040-2392-6-2.
Samson, F., Mottron, L., Soulieres, I., & Zeffiro, T. A. (2012). Enhanced visual functioning in autism: An ALE meta-analysis. Human Brain Mapping, 33(7), 1553–1581. https://doi.org/10.1002/hbm.21307.
Sawyer-Glover, A. M., & Shellock, F. G. (2000). Pre-MRI procedure screening: Recommendations and safety considerations for biomedical implants and devices. Journal of Magnetic Resonance Imaging, 12(1), 92–106.
Saxe, R., Brett, M., & Kanwisher, N. (2006). Divide and conquer: A defense of functional localizers. Neuroimage, 30(4), 1088–1096. https://doi.org/10.1016/j.neuroimage.2005.12.062.
Schwarzkopf, D. S., Anderson, E. J., de Haas, B., White, S. J., & Rees, G. (2014). Larger extrastriate population receptive fields in autism spectrum disorders. Journal of Neuroscience, 34(7), 2713–2724. https://doi.org/10.1523/JNEUROSCI.4416-13.2014.
Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., et al. (1995). Borders of multiple visual areas in humans revealed by functional magnetic-resonance-imaging. Science, 268(5212), 889–893. https://doi.org/10.1126/science.7754376.
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315. https://doi.org/10.1038/nn1008.
Sperandio, I., Chouinard, P. A., & Goodale, M. A. (2012). Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. Nature Neuroscience, 15(4), 540–542. https://doi.org/10.1038/nn.3069.
Sperandio, I., Unwin, K. L., Landry, O., & Chouinard, P. A. (2017). Size constancy is preserved but afterimages are prolonged in typical individuals with higher degrees of self-reported autistic traits. Journal of Autism and Developmental Disorders, 47(2), 447–459. https://doi.org/10.1007/s10803-016-2971-6.
Tsermentseli, S., O'Brien, J. M., & Spencer, J. V. (2008). Comparison of form and motion coherence processing in autistic spectrum disorders and dyslexia. Journal of Autism and Developmental Disorders, 38(7), 1201–1210. https://doi.org/10.1007/s10803-007-0500-3.
Vandenbroucke, M. W. G., Scholte, H. S., van Engeland, H., Lamme, V. A. F., & Kemner, C. (2008). A neural substrate for atypical low-level visual processing in autism spectrum disorder. Brain, 131, 1013–1024. https://doi.org/10.1093/brain/awm321.
Wandell, B. A., & Winawer, J. (2011). Imaging retinotopic maps in the human brain. Vision Research, 51(7), 718–737. https://doi.org/10.1016/j.visres.2010.08.004.
Yucel, G. H., Belger, A., Bizzell, J., Parlier, M., Adolphs, R., & Piven, J. (2015). Abnormal neural activation to faces in the parents of children with autism. Cerebral Cortex, 25(12), 4653–4666. https://doi.org/10.1093/cercor/bhu147.
Acknowledgments
This work was supported by a grant from La Trobe University’s Understanding Disease Research Focus Area awarded to PAC and by a scholarship award from La Trobe University to GYY. We also acknowledge the facilities and scientific and technical assistance of Australia’s National Imaging Facility, a National Collaborative Research Infrastructure Strategy (NCRIS) capability, at the Swinburne Neuroimaging Facility (SNI), at the Swinburne University of Technology. We thank Alyse Brown for collecting the MRI data.
Author information
Affiliations
Contributions
JSV and PAC contributed to the conceptualisation of the design. All authors contributed to the analyses and the writing of the manuscript.
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Yildiz, G.Y., Vilsten, J.S., Millard, A.S. et al. Grey-Matter Thickness of the Left But Not the Right Primary Visual Area Correlates with Autism Traits in Typically Developing Adults. J Autism Dev Disord 51, 405–417 (2021). https://doi.org/10.1007/s10803-020-04553-w
Published:
Issue Date:
Keywords
- Autism-spectrum quotient (AQ)
- Magnetic resonance imaging (MRI)
- Primary visual area (V1)
- Grey-matter thickness
- Retinotopy