Journal of Autism and Developmental Disorders

, Volume 48, Issue 2, pp 351–360 | Cite as

Temporal Processing Instability with Millisecond Accuracy is a Cardinal Feature of Sensorimotor Impairments in Autism Spectrum Disorder: Analysis Using the Synchronized Finger-Tapping Task

  • Chie Morimoto
  • Eisuke Hida
  • Keisuke Shima
  • Hitoshi Okamura
Original Paper

Abstract

To identify a specific sensorimotor impairment feature of autism spectrum disorder (ASD), we focused on temporal processing with millisecond accuracy. A synchronized finger-tapping task was used to characterize temporal processing in individuals with ASD as compared to typically developing (TD) individuals. We found that individuals with ASD showed more variability in temporal processing parameters than TD individuals. In addition, temporal processing instability was related to altered motor performance. Further, receiver operating characteristic (ROC) curve analyses indicated that altered temporal processing can be useful for distinguishing between individuals with and without ASD. These results suggest that instability of temporal processing with millisecond accuracy is a fundamental feature of sensorimotor impairments in ASD.

Keywords

Autism spectrum disorder Objective evaluation index Temporal processing Increased variability The cerebellum 

Notes

Acknowledgments

We gratefully acknowledge the cooperation of all participants and their families, and also the school officials involved in this study. We thank K. Hashimoto, M. Kakehashi, K. Yamaoka, M. Walters, Y. Ohnishi, and members of Okamura’s lab for their helpful advice and discussions. We also thank Rachel James, Ph.D., from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

The authors did not receive any financial support for this study.

Author Contributions

CM and HO desinged the study. KS contributed the experimental tool. CM performed the data collection. CM and EH analyzed the data. CM, EH, KS and HO wrote the paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2017_3334_MOESM1_ESM.pdf (875 kb)
Supplementary Fig. 1 Typical waveforms for finger-tapping distance in each group (PDF 875 KB)
10803_2017_3334_MOESM2_ESM.pdf (895 kb)
Supplementary Fig. 2 Typical waveforms for finger-tapping velocity in each group (PDF 894 KB)

References

  1. Ackermann, H., Mathiak, K., & Riecker, A. (2007). The contribution of the cerebellum to speech production and speech perception: Clinical and functional imaging data. The Cerebellum, 6, 202–213.CrossRefPubMedGoogle Scholar
  2. Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. The American Journal of Psychiatry, 160, 262–273.CrossRefPubMedGoogle Scholar
  3. Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Pub.CrossRefGoogle Scholar
  4. Bauman, M. L., & Kemper, T. L. (1994). Neuroanatomic observations of the brain in autism. The Neurobiology of Autism, 612, 119–145.Google Scholar
  5. Bölte, S., & Poustka, F. (2002). The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiatry and Human Development, 33, 165–172.CrossRefPubMedGoogle Scholar
  6. Bosl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC Medicine 9, 18 doi: 10.1186/1741-7015-9-18.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80, 807–815.CrossRefPubMedGoogle Scholar
  8. Cao, M., Wang, Z., & He, Y. (2015). Connectomics in psychiatric research: advances and applications. Neuropsychiatric Disease and Treatment, 11, 2801–2810. doi: 10.2147/ndt.s63470.PubMedPubMedCentralGoogle Scholar
  9. Charman, T., Pickles, A., Simonoff, E., Chandler, S., Loucas, T., & Baird, G. (2011). IQ in children with autism spectrum disorders: Data from the Special Needs and Autism Project (SNAP). Psychological Medicine, 41, 619–627.CrossRefPubMedGoogle Scholar
  10. Chivate, R., Thakrar, P., Narang, J., Patkar, D., Kumar, S., Verma, M. PET/CT in Autism: A Diagnostic Tool. In Radiological Society of North America 2014 Scientific Assembly and Annual Meeting-Chicago IL, 2014.Google Scholar
  11. Courchesne, E., Saitoh, O., Townsend, J., Yeung-Courchesne, R., Press, G., Lincoln, A., et al. (1994). Cerebellar hypoplasia and hyperplasia in infantile autism. Lancet, 343, 63–64.CrossRefPubMedGoogle Scholar
  12. De Bildt, A., Sytema, S., Kraijer, D., & Minderaa, R. (2005). Prevalence of pervasive developmental disorders in children and adolescents with mental retardation. Journal of Child Psychology and Psychiatry, 46, 275–286.CrossRefPubMedGoogle Scholar
  13. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.CrossRefPubMedGoogle Scholar
  14. Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders, 40, 1227–1240.CrossRefPubMedGoogle Scholar
  15. Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control-Champaign, 10, 244.CrossRefGoogle Scholar
  16. Gowen, E., & Hamilton, A. (2013). Motor abilities in autism: A review using a computational context. Journal of Autism and Developmental Disorders, 43, 323–344. doi: 10.1007/s10803-012-1574-0.CrossRefPubMedGoogle Scholar
  17. Green, D., Baird, G., Barnett, A. L., Henderson, L., Huber, J., & Henderson, S. E. (2002). The severity and nature of motor impairment in Asperger’s syndrome: A comparison with specific developmental disorder of motor function. Journal of Child Psychology and Psychiatry, 43, 655–668.CrossRefPubMedGoogle Scholar
  18. Hessl, D., Nguyen, D. V., Green, C., Chavez, A., Tassone, F., Hagerman, R. J., et al. (2009). A solution to limitations of cognitive testing in children with intellectual disabilities: The case of fragile X syndrome. Journal of Neurodevelopmental Disorders, 1, 33–45. doi: 10.1007/s11689-008-9001-8.CrossRefPubMedGoogle Scholar
  19. Hoppenbrouwers, S. S., Schutter, D. J., Fitzgerald, P. B., Chen, R., & Daskalakis, Z. J. (2008). The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: A review. Brain Research Reviews, 59, 185–200.CrossRefPubMedGoogle Scholar
  20. Ivry, R. B., Keele, S., & Diener, H. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale, 73, 167–180.CrossRefPubMedGoogle Scholar
  21. Ivry, R. B., & Spencer, R. M. (2004). The neural representation of time. Current Opinion in Neurobiology, 14, 225–232.CrossRefPubMedGoogle Scholar
  22. Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology. 57, 645–652.CrossRefPubMedGoogle Scholar
  23. Kirby, A., Sugden, D., & Purcell, C. (2014). Diagnosing developmental coordination disorders. Archives of Disease in Childhood, 99, 292–296. doi: 10.1136/archdischild-2012-303569.CrossRefPubMedGoogle Scholar
  24. La Malfa, G., Lassi, S., Bertelli, M., Salvini, R., & Placidi, G. (2004). Autism and intellectual disability: A study of prevalence on a sample of the Italian population. Journal of Intellectual Disability Research, 48, 262–267.CrossRefPubMedGoogle Scholar
  25. Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13, 250–255.CrossRefPubMedGoogle Scholar
  26. Loras, H., Stensdotter, A. K., Ohberg, F., & Sigmundsson, H. (2013). Individual differences in motor timing and its relation to cognitive and fine motor skills. PLoS ONE, 8, e69353. doi: 10.1371/journal.pone.0069353.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Marco, E. J., Hinkley, L. B., Hill, S. S., & Nagarajan, S. S. (2011). Sensory processing in autism: A review of neurophysiologic findings. Pediatric Research, 69, 48r–54r. doi: 10.1203/PDR.0b013e3182130c54.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Marko, M. K., Crocetti, D., Hulst, T., Donchin, O., Shadmehr, R., & Mostofsky, S. H. (2015). Behavioural and neural basis of anomalous motor learning in children with autism. Brain, 138, 784–797. doi: 10.1093/brain/awu394.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Martin, R., Tigera, C., Denckla, M. B., E. MARK MAHONE (2010). Factor structure of paediatric timed motor examination and its relationship with IQ. Developmental medicine and child neurology 52.Google Scholar
  30. Maschke, M., Gomez, C. M., Ebner, T. J., & Konczak, J. (2004). Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. Journal of neurophysiology, 91, 230–238.CrossRefPubMedGoogle Scholar
  31. Mates, J. (1994). A model of synchronization of motor acts to a stimulus sequence. Biological cybernetics, 70, 463–473.CrossRefPubMedGoogle Scholar
  32. Matson, J. L., Dempsey, T., & Fodstad, J. C. (2009). The effect of Autism Spectrum Disorders on adaptive independent living skills in adults with severe intellectual disability. Research in developmental disabilities, 30, 1203–1211. doi: 10.1016/j.ridd.2009.04.001.CrossRefPubMedGoogle Scholar
  33. Mauk, M., Medina, J., Nores, W., & Ohyama, T. (2000). Cerebellar function: coordination, learning or timing? Current biology: CB, 10, R522-R525.CrossRefGoogle Scholar
  34. Medina, J. F. (2011). The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Current opinion in neurobiology, 21, 616–622.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mosconi, M. W., et al. (2013). Saccade adaptation abnormalities implicate dysfunction of cerebellar-dependent learning mechanisms in Autism Spectrum Disorders (ASD). PLoS One, 8, e63709. doi: 10.1371/journal.pone.0063709.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mosconi, M. W., Mohanty, S., Greene, R. K., Cook, E. H., Vaillancourt, D. E., & Sweeney, J. A. (2015). Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. The Journal of neuroscience: the official journal of the Society for Neuroscience 35.Google Scholar
  37. Mosconi, M. W., & Sweeney, J. A. (2015). Sensorimotor dysfunctions as primary features of autism spectrum disorders. Sci China Life Sci, 58, 1016–1023. doi: 10.1007/s11427-015-4894-4.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Müller, F., & Dichgans, J. (1994). Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale, 101, 485–492.CrossRefPubMedGoogle Scholar
  39. Nazarali, N., Glazebrook, C. M., & Elliott, D. (2009). Movement planning and reprogramming in individuals with autism. Journal of Autism and Developmental Disorders, 39, 1401–1411.CrossRefPubMedGoogle Scholar
  40. Ohmae, S., Uematsu, A., & Tanaka, M. (2013). Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. The Journal of Neuroscience, 33, 15432–15441.CrossRefPubMedGoogle Scholar
  41. Ozonoff, S., Young, G. S., Goldring, S., Greiss-Hess, L., Herrera, A. M., Steele, J., et al. (2008). Gross motor development, movement abnormalities, and early identification of autism. Journal of Autism and Developmental Disorders, 38, 644–656.CrossRefPubMedGoogle Scholar
  42. Ozonoff, S., Rogers, S. J., Farnham, J. M., & Pennington, B. F. (1993). Can standard measures identify subclinical markers of autism?. Journal of autism and developmental disorders, 23, 429–441.CrossRefPubMedGoogle Scholar
  43. Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine, 27, 157–172.CrossRefPubMedGoogle Scholar
  44. Penhune, V. B., Zattore, R. J., & Evans, A. C. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience, 10, 752–765.CrossRefPubMedGoogle Scholar
  45. Piochon, C., et al. (2014). Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nature Communications, 5, 5586. doi: 10.1038/ncomms6586.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Postorino, V., et al. (2016). Intellectual disability in Autism Spectrum Disorder: Investigation of prevalence in an Italian sample of children and adolescents. Research in Developmental Disabilities, 48, 193–201.CrossRefPubMedGoogle Scholar
  47. Provost, B., Lopez, B. R., & Heimerl, S. (2007). A comparison of motor delays in young children: autism spectrum disorder, developmental delay, and developmental concerns. Journal of Autism and Developmental Disorders, 37, 321–328.CrossRefPubMedGoogle Scholar
  48. Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A., Cox, R. W., & Binder, J. R. (1997). Distributed neural systems underlying the timing of movements. The Journal of Neuroscience, 17, 5528–5535.PubMedGoogle Scholar
  49. Raymond, J. L., Lisberger, S. G., & Mauk, M. D. (1996). The cerebellum: A neuronal learning machine? Science, 272, 1126–1131.CrossRefPubMedGoogle Scholar
  50. Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20, 403–452. doi: 10.3758/s13423-012-0371-2.CrossRefGoogle Scholar
  51. Rinehart, N. J., et al. (2006). Gait function in newly diagnosed children with autism: cerebellar and basal ganglia related motor disorder. Developmental Medicine and Child Neurology, 48, 819–824.CrossRefPubMedGoogle Scholar
  52. Sano, Y., et al. (2016). Quantifying Parkinson’s disease finger-tapping severity by extracting and synthesizing finger motion properties. Medical & Biological Engineering & Computing, 54, 953–965.CrossRefGoogle Scholar
  53. Schwartze, M., Keller, P. E., & Kotz, S. A. (2016). Spontaneous, synchronized, and corrective timing behavior in cerebellar lesion patients. Behavioural Brain Research, 312, 285–293.CrossRefPubMedGoogle Scholar
  54. Serrien, D. J., & Wiesendanger, M. (1999). Grip-load force coordination in cerebellar patients. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 128, 76–80.CrossRefPubMedGoogle Scholar
  55. Shima, K., Tsuji, T., Kandori, A., Yokoe, M., & Sakoda, S. (2009). Measurement and evaluation of finger tapping movements using log-linearized Gaussian mixture networks. Sensors, 9, 2187–2201.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stanley-Cary, C., Rinehart, N., Tonge, B., White, O., & Fielding, J. (2011). Greater disruption to control of voluntary saccades in autistic disorder than Asperger’s disorder: evidence for greater cerebellar involvement in autism? Cerebellum, 10, 70–80. doi: 10.1007/s12311-010-0229-y.CrossRefPubMedGoogle Scholar
  57. Takarae, Y., Minshew, N., Luna, B., & Sweeney, J. (2004a). Oculomotor abnormalities parallel cerebellar histopathology in autism. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 1359–1361.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Takarae, Y., Minshew, N. J., Luna, B., Krisky, C. M., & Sweeney, J. A. (2004b). Pursuit eye movement deficits in autism. Brain, 127, 2584–2594. doi: 10.1093/brain/awh307.CrossRefPubMedGoogle Scholar
  59. Thaut, M. H., & Kenyon, G. P. (2003). Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization. Human Movement Science, 22, 321–338.CrossRefPubMedGoogle Scholar
  60. Thaut, M. H., Miller, R. A., & Schauer, L. M. (1998). Multiple synchronization strategies in rhythmic sensorimotor tasks: Phase vs period correction. Biological Cybernetics, 79, 241–250.CrossRefPubMedGoogle Scholar
  61. Théoret, H., Haque, J., & Pascual-Leone, A. (2001). Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neuroscience Letters, 306, 29–32.CrossRefPubMedGoogle Scholar
  62. Tsai, P. T., et al. (2012). Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 488, 647–651.CrossRefPubMedPubMedCentralGoogle Scholar
  63. van der Fels, I. M., te Wierike, S. C., Hartman, E., Elferink-Gemser, M. T., Smith, J., & Visscher, C. (2015). The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. Journal of Science and Medicine in Sport/Sports Medicine Australia, 18, 697–703.CrossRefGoogle Scholar
  64. Vernazza-Martin, S., et al. (2005). Goal directed locomotion and balance control in autistic children. Journal of Autism and Developmental Disorders, 35, 91–102.CrossRefPubMedGoogle Scholar
  65. Wang, Z., Magnon, G. C., White, S. P., Greene, R. K., Vaillancourt, D. E., & Mosconi, M. W. (2015). Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping. Journal of Neurophysiology, 113, 1989–2001.CrossRefPubMedGoogle Scholar
  66. Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.CrossRefGoogle Scholar
  67. Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2, 338–347.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Psychosocial Rehabilitation, Graduate School of Biomedical & Health SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of Biostatistics and Data Science, Graduate School of MedicineOsaka UniversitySuitaJapan
  3. 3.Division of Intelligent Systems Engineering, Faculty of EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations