Journal of Autism and Developmental Disorders

, Volume 48, Issue 2, pp 417–429 | Cite as

White Matter Microstructure of the Human Mirror Neuron System is Related to Symptom Severity in Adults with Autism

  • Odette Fründt
  • Robert Schulz
  • Daniel Schöttle
  • Bastian Cheng
  • Götz Thomalla
  • Hanna Braaß
  • Christos Ganos
  • Nicole David
  • Ina Peiker
  • Andreas K. Engel
  • Tobias Bäumer
  • Alexander Münchau
Original Paper

Abstract

Mirror neuron system (MNS) dysfunctions might underlie deficits in autism spectrum disorders (ASD). Diffusion tensor imaging based probabilistic tractography was conducted in 15 adult ASD patients and 13 matched, healthy controls. Fractional anisotropy (FA) was quantified to assess group differences in tract-related white matter microstructure of both the classical MNS route (mediating “emulation”) and the alternative temporo-frontal route (mediating “mimicry”). Multiple linear regression was used to investigate structure–function relationships between MNS connections and ASD symptom severity. There were no significant group differences in tract-related FA indicating an intact classical MNS in ASD. Direct temporo-frontal connections could not be reconstructed challengeing the concept of multiple routes for imitation. Tract-related FA of right-hemispheric parieto-frontal connections was negatively related to autism symptom severity.

Keywords

Autism spectrum disorders Diffusion tensor imaging Fiber tracking Imitation Mirror neuron system 

Notes

Acknowledgments

We would like to thank the patients for their participation in the study.

Funding

This study was supported by the Else Kröner-Fresenius-Stiftung (2011_A37; AM), by the Deutsche Forschungsgemeinschaft (DFG; SFB 936/A3/C5, A.M., A.K.E.) and by the European Union (EU, “socSMCs” - H2020-641321, AKE).

Author Contributions

OF conceived of the study, participated in its design and coordination, performed the measurement and parts of the statistical analysis, interpreted the data and drafted and revised the manuscript. RS participated in its design, performed the measurement and parts of the statistical analysis, interpreted the data and drafted and revised the manuscript. DS, ND and IP conceived of the study, participated in its design and coordination, performed the measurement and revised the manuscript. BC, GT, HB, CG, AE, TB participated in the design and coordination of the study, interpreted the data and revised the manuscript. AM supervised the study, conceived of the study, participated in its design and coordination, performed the measurement interpreted the data and drafted and revised the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

Odette Fründt received conference and travel funds for the MDS Congress in Berlin in 2016 by BIAL. Daniel Schöttle received honoria for speaking at symposia and attending symposia by Janssen-Cilag, Otsuka and Lundbeck. Götz Thomalla received fees as a consultant, lecture fees, or advisory board participation from Acandis, Bristol-Myers Squibb/Pfizer, Boehringer Ingelheim, Daichii Sankyo, GlaxoSmithKline, and Stryker. He received a research grant by Bayer. Christos Ganos received research support from the German Parkinson Society, and the German Research Foundation (Deutsche Forschungsgemeinschaft) and is currently funded by the VolkswagenStiftung (Freigeist-Fellowship). Besides the abovementioned funding by the European Union and the DFG (EU, “socSMCs” - H2020-641321, DFG; SFB 936/A3/C5), Ina Peiker, Nicole David and Andreas K. Engel do not have any other conflicts of interest. Tobias Bäumer received honaria for speaking at symposia form Merz Pharmaceuticals, Ipsen Pharma, Allergan and Child & Brain and served on the scientific advisory board for Merz Pharmaceuticals. Alexander Münchau served on the scientific advisory board of the Tourette Gesellschaft Deutschland (German Tourette syndrome association) and was speaker of the Lübeck Centre for Rare Diseases. He received research grants by Pharm Allergan, Ipsen, Merz Pharmaceuticals, Actelion and got honoraria for lectures from Pharm Allergan, Ipsen, Merz Pharmaceuticals, Actelion, GlaxoSmithKline, Desitin and Teva. He furthermore obtained support from non-profit foundations or societies Possehl-Stiftung, Lübeck; Dystonia Coalition (USA); Margot und Jürgen Wessel Stiftung (Lübeck), Tourette Syndrome Association (Germany); European Huntington Disease Network; N.E.MO. Charity supporting the research of paediatric movement disorders; Ärztekammer Schleswig-Holstein; Fortbildungsakademie der Deutschen Gesellschaft für Neurologie; Förderstiftung des Universitätsklinikums Schleswig-Holstein (UKSH). He furthermore received academic research support by the European Union as part of the FP 7 program (HEALTH.2011.2.2.1-3, PI, 2011–2015), the Deutsche Forschungsgemeinschaft (DFG, MU 1692/3-1, PI, 2010–2014/SFB 936, PI, 2011–2015 and 2015–2019/MU 1692/4-1, PI, 2015–2017) and the Bundesministerium für Bildung und Forschung (BMBF): DysTract consortium, PI, 2015–2018. He got royalties from the publication of the book Neurogenetics (Oxford University Press). Robert Schulz, Bastian Cheng and Hanna Braaß do not have any conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2017_3332_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1851 KB)

References

  1. Ameis, S. H., & Catani, M. (2015). Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorder. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 62, 158–181. doi: 10.1016/j.cortex.2014.10.014.CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders Dsm-IV-Tr (Text Revision) (4th edn. ed.). Arlington: American Psychiatric Press Inc.Google Scholar
  3. Anagnostou, E., & Taylor, M. J. (2011). Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here. Molecular Autism, 2(1), 4. doi: 10.1186/2040-2392-2-4.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aziz-Zadeh, L., Cattaneo, L., Rochat, M., & Rizzolatti, G. (2005). Covert speech arrest induced by rTMS over both motor and nonmotor left hemisphere frontal sites. Journal of Cognitive Neuroscience, 17(6), 928–938. doi: 10.1162/0898929054021157.CrossRefPubMedGoogle Scholar
  5. Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. The European Journal of Neuroscience 0953-816X (P), 19(9), 2609–2612. doi: 10.1111/j.0953-816X.2004.03348.x.Google Scholar
  6. Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2006). Lateralization of the human mirror neuron system. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(11), 2964–2970. doi: 10.1523/JNEUROSCI.2921-05.2006.CrossRefGoogle Scholar
  7. Aziz-Zadeh, L., Maeda, F., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2002). Lateralization in motor facilitation during action observation: A TMS study. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation cerebrale, 144(1), 127–131. doi: 10.1007/s00221-002-1037-5.CrossRefPubMedGoogle Scholar
  8. Bakroon, A., & Lakshminarayanan, V. (2016). Visual function in autism spectrum disorders: A critical review. Clinical & Experimental Optometry: Journal of the Australian Optometrical Association, 99(4), 297–308. doi: 10.1111/cxo.12383.CrossRefGoogle Scholar
  9. Baron-Cohen, S., Hoekstra, R. A., Knickmeyer, R., & Wheelwright, S. (2006). The autism-spectrum quotient (AQ)—Adolescent version. Journal of Autism and Developmental Disorders, 36(3), 343–350. doi: 10.1007/s10803-006-0073-6.CrossRefPubMedGoogle Scholar
  10. Baron-Cohen, S., Richler, J., Bisarya, D., Gurunathan, N., & Wheelwright, S. (2003). The systemizing quotient: An investigation of adults with Asperger syndrome or high-functioning autism, and normal sex differences. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1430), 361–374. doi: 10.1098/rstb.2002.1206.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163–175.CrossRefPubMedGoogle Scholar
  12. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.CrossRefPubMedGoogle Scholar
  13. Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, 34(1), 144–155. doi: 10.1016/j.neuroimage.2006.09.018.CrossRefPubMedGoogle Scholar
  14. Ben Bashat, D. (2011). Abnormal developmental trajectories of white matter in autism—The contribution of MRI. In V. Eapen (Ed.), Autism—A Neurodevelopmental journey from genes to behaviour: Rijeka: InTech.Google Scholar
  15. Buck, T. R., Viskochil, J., Farley, M., Coon, H., McMahon, W. M., Morgan, J., et al. (2014). Psychiatric comorbidity and medication use in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(12), 3063–3071. doi: 10.1007/s10803-014-2170-2.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheng, Y., Chou, K. H., Decety, J., Chen, I. Y., Hung, D., Tzeng, O. J., et al. (2009). Sex differences in the neuroanatomy of human mirror-neuron system: A voxel-based morphometric investigation. Neuroscience, 158(2), 713–720. doi: 10.1016/j.neuroscience.2008.10.026.CrossRefPubMedGoogle Scholar
  17. Chien, H. Y., Gau, S. S., Hsu, Y. C., Chen, Y. J., Lo, Y. C., Shih, Y. C., et al. (2015). Altered cortical thickness and tract integrity of the mirror neuron system and associated social communication in autism spectrum disorder. Autism Research, 8(6), 694–708. doi: 10.1002/aur.1484.CrossRefPubMedGoogle Scholar
  18. Christensen, D. L., Baio, J., Braun, K. V., Bilder, D., Charles, J., Constantino, J. N., et al. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR. Surveillance Summaries: Morbidity and Mortality Weekly Report. Surveillance Summaries/CDC, 65(3), 1–23. doi: 10.15585/mmwr.ss6503a1.CrossRefGoogle Scholar
  19. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30. doi: 10.1038/nn1611.CrossRefPubMedGoogle Scholar
  20. De Fosse, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S. Jr., McGrath, L., et al. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56(6), 757–766. doi: 10.1002/ana.20275.CrossRefPubMedGoogle Scholar
  21. Fan, Y. T., Decety, J., Yang, C. Y., Liu, J. L., & Cheng, Y. (2010). Unbroken mirror neurons in autism spectrum disorders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 51(9), 981–988. doi: 10.1111/j.1469-7610.2010.02269.x.CrossRefPubMedGoogle Scholar
  22. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.CrossRefPubMedGoogle Scholar
  23. Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., et al. (1989). The Yale-Brown obsessive compulsive scale. I. Development, use, and reliability. Archives of General Psychiatry, 46(11), 1006–1011.CrossRefPubMedGoogle Scholar
  24. Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex (New York, N. Y.: 1991), 16(9), 1276–1282. doi: 10.1093/cercor/bhj069.CrossRefGoogle Scholar
  25. Hamilton, A. F. (2008). Emulation and mimicry for social interaction: A theoretical approach to imitation in autism. The Quarterly Journal of Experimental Psychology, 61(1), 101–115. doi: 10.1080/17470210701508798.CrossRefPubMedGoogle Scholar
  26. Hamilton, A. F. (2013). Reflecting on the mirror neuron system in autism: A systematic review of current theories. Developmental Cognitive Neuroscience 3, 91–105. doi: 10.1016/j.dcn.2012.09.008.CrossRefPubMedGoogle Scholar
  27. Hamilton, A. F. (2015). Cognitive underpinnings of social interaction. The Quarterly Journal of Experimental Psychology, 68(3), 417–432. doi: 10.1080/17470218.2014.973424.CrossRefPubMedGoogle Scholar
  28. Hamilton, A. F., & Grafton, S. T. (2007). The motor hierarchy: From kinematics to goals and intentions. In P. Haggard;, Y. Rosetti; & M. Kawato, (Eds.), Attention and Performance xxii (pp. 1–29). Oxford: Oxford University Press.Google Scholar
  29. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in cognitive sciences, 4(6), 223–233.CrossRefPubMedGoogle Scholar
  30. Hecht, E. E., Gutman, D. A., Preuss, T. M., Sanchez, M. M., Parr, L. A., & Rilling, J. K. (2013). Process versus product in social learning: Comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. Cerebral cortex (New York, N. Y.: 1991), 23(5), 1014–1024. doi: 10.1093/cercor/bhs097.CrossRefGoogle Scholar
  31. Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., et al. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52(5), 588–596. doi: 10.1002/ana.10349.CrossRefPubMedGoogle Scholar
  32. Hirose, K., Miyata, J., Sugihara, G., Kubota, M., Sasamoto, A., Aso, T., et al. (2014). Fiber tract associated with autistic traits in healthy adults. Journal of Psychiatric Research, 59, 117–124. doi: 10.1016/j.jpsychires.2014.09.001.CrossRefPubMedGoogle Scholar
  33. Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15(6), 632–637. doi: 10.1016/j.conb.2005.10.010.CrossRefPubMedGoogle Scholar
  34. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature reviews Neuroscience, 7(12), 942–951. doi: 10.1038/nrn2024.CrossRefPubMedGoogle Scholar
  35. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3(3), e79. doi: 10.1371/journal.pbio.0030079.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–2528.CrossRefPubMedGoogle Scholar
  37. Izawa, J., Pekny, S. E., Marko, M. K., Haswell, C. C., Shadmehr, R., & Mostofsky, S. H. (2012). Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditions. Autism Research, 5(2), 124–136. doi: 10.1002/aur.1222.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lehrl, S. (2005). Mehrfachwach-Wortschatz-Intelligenztest MWT-B (5th edn). Balingen: Spitta.Google Scholar
  39. Martineau, J., Andersson, F., Barthelemy, C., Cottier, J. P., & Destrieux, C. (2010). Atypical activation of the mirror neuron system during perception of hand motion in autism. Brain Research, 1320, 168–175. doi: 10.1016/j.brainres.2010.01.035.CrossRefPubMedGoogle Scholar
  40. Mattis, S. (1988). Dementia rating scale: Professional manual. Odessa, FL: Psychological Assessment ResourcesGoogle Scholar
  41. Nebel, M. B., Eloyan, A., Nettles, C. A., Sweeney, K. L., Ament, K., Ward, R. E., et al. (2016). Intrinsic visual-motor synchrony correlates with social deficits in autism. Biological Psychiatry, 79(8), 633–641. doi: 10.1016/j.biopsych.2015.08.029.CrossRefPubMedGoogle Scholar
  42. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  43. Ramachandran, V. S., & Oberman, L. M. (2006). Broken mirrors: A theory of autism. Scientific American, 295(5), 62–69.CrossRefPubMedGoogle Scholar
  44. Retz-Junginger, P., Retz, W., Blocher, D., Weijers, H. -G., Trott, G. -E., Wender, P. H., Rössler, M. (2002). Wender Utah Rating Scale (WURS-k) Die deutsche Kurzform zur retrospektiven Erfassung des hyperkinetischen Syndroms bei Erwachsenen. Der Nervenarzt, 73(9), 830–838.CrossRefGoogle Scholar
  45. Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Reviews, 94(2), 655–706. doi: 10.1152/physrev.00009.2013.CrossRefPubMedGoogle Scholar
  46. Rizzolatti, G., & Craighero, L. (2004a). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi: 10.1146/annurev.neuro.27.070203.144230.CrossRefPubMedGoogle Scholar
  47. Rizzolatti, G., & Craighero, L. (2004b). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi: 10.1146/annurev.neuro.27.070203.144230.CrossRefPubMedGoogle Scholar
  48. Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2009). Mirror neurons and their clinical relevance. Nature Clinical Practice. Neurology, 5(1), 24–34. doi: 10.1038/ncpneuro0990.CrossRefPubMedGoogle Scholar
  49. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., et al. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 111(2), 246–252.CrossRefPubMedGoogle Scholar
  50. Rosler, M., Retz, W., Retz-Junginger, P., Thome, J., Supprian, T., Nissen, T., et al. (2004). [Tools for the diagnosis of attention-deficit/hyperactivity disorder in adults. Self-rating behaviour questionnaire and diagnostic checklist]. Der Nervenarzt, 75(9), 888–895. doi: 10.1007/s00115-003-1622-2.CrossRefPubMedGoogle Scholar
  51. Sasaki, A. T., Kochiyama, T., Sugiura, M., Tanabe, H. C., & Sadato, N. (2012). Neural networks for action representation: A functional magnetic-resonance imaging and dynamic causal modeling study. Frontiers in Human Neuroscience, 6, 236. doi: 10.3389/fnhum.2012.00236.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sato, W., Toichi, M., Uono, S., & Kochiyama, T. (2012). Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders. BMC Neuroscience, 13, 99. doi: 10.1186/1471-2202-13-99.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schaer, M., Ottet, M. C., Scariati, E., Dukes, D., Franchini, M., Eliez, S., et al. (2013). Decreased frontal gyrification correlates with altered connectivity in children with autism. Frontiers in Human Neuroscience, 7, 750. doi: 10.3389/fnhum.2013.00750.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schaipp, C. (2001). Validität und diagnostische Brauchbarkeit ausgewählter indirekter und direkter Befragungsmethoden zur Diagnostik von Aggressivität, Neurotizismus bzw. psychischer Stabilität. München: Herbert Utz Verlag.Google Scholar
  55. Schulz, R., Frey, B. M., Koch, P., Zimerman, M., Bonstrup, M., Feldheim, J., et al. (2015a). Cortico-cerebellar structural connectivity is related to residual motor output in chronic stroke. Cerebral cortex (New York, N. Y.: 1991). doi: 10.1093/cercor/bhv251.Google Scholar
  56. Schulz, R., Koch, P., Zimerman, M., Wessel, M., Bonstrup, M., Thomalla, G., et al. (2015b). Parietofrontal motor pathways and their association with motor function after stroke. Brain: A Journal of Neurology, 138(Pt 7), 1949–1960. doi: 10.1093/brain/awv100.CrossRefGoogle Scholar
  57. Schunke, O., Schottle, D., Vettorazzi, E., Brandt, V., Kahl, U., Baumer, T., et al. (2015). Mirror me: Imitative responses in adults with autism. Autism: The International Journal of Research and Practice. doi: 10.1177/1362361315571757.Google Scholar
  58. Shih, P., Keehn, B., Oram, J. K., Leyden, K. M., Keown, C. L., & Muller, R. A. (2011). Functional differentiation of posterior superior temporal sulcus in autism: A functional connectivity magnetic resonance imaging study. Biological psychiatry, 70(3), 270–277. doi: 10.1016/j.biopsych.2011.03.040.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Southgate, V., & Hamilton, A. F. (2008). Unbroken mirrors: Challenging a theory of autism. Trends in cognitive sciences, 12(6), 225–229. doi: 10.1016/j.tics.2008.03.005.CrossRefPubMedGoogle Scholar
  60. Spek, A., Schatorje, T., Scholte, E., & van Berckelaer-Onnes, I. (2009). Verbal fluency in adults with high functioning autism or Asperger syndrome. Neuropsychologia, 47(3), 652–656. doi: 10.1016/j.neuropsychologia.2008.11.015.CrossRefPubMedGoogle Scholar
  61. Travers, B. G., Adluru, N., Ennis, C., Tromp do, P. M., Destiche, D., Doran, S., et al. (2012). Diffusion tensor imaging in autism spectrum disorder: A review. Autism Research, 5(5), 289–313. doi: 10.1002/aur.1243.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Verly, M., Verhoeven, J., Zink, I., Mantini, D., Van Oudenhove, L., Lagae, L., et al. (2014). Structural and functional underconnectivity as a negative predictor for language in autism. Human Brain Mapping, 35(8), 3602–3615. doi: 10.1002/hbm.22424.CrossRefPubMedGoogle Scholar
  63. von dem Hagen, E. A., Nummenmaa, L., Yu, R., Engell, A. D., Ewbank, M. P., & Calder, A. J. (2011). Autism spectrum traits in the typical population predict structure and function in the posterior superior temporal sulcus. Cerebral cortex (New York, N. Y.: 1991), 21(3), 493–500. doi: 10.1093/cercor/bhq062.CrossRefGoogle Scholar
  64. Wheelwright, S., Baron-Cohen, S., Goldenfeld, N., Delaney, J., Fine, D., Smith, R., et al. (2006). Predicting autism spectrum quotient (AQ) from the systemizing quotient-revised (SQ-R) and empathy quotient (EQ). Brain Research, 1079(1), 47–56. doi: 10.1016/j.brainres.2006.01.012.CrossRefPubMedGoogle Scholar
  65. Williams, J. H., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4), 287–295.CrossRefPubMedGoogle Scholar
  66. Wittchen, H. U., Zaudig, M., & Fydrich, T. (1997). Strukturiertes Klinisches Interview für DSM-IV. Göttingen: Hogrefe.Google Scholar
  67. Yang, J., & Hofmann, J. (2015). Action observation and imitation in autism spectrum disorders: An ALE meta-analysis of fMRI studies. Brain Imaging and Behavior. doi: 10.1007/s11682-015-9456-7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Odette Fründt
    • 1
  • Robert Schulz
    • 1
  • Daniel Schöttle
    • 2
  • Bastian Cheng
    • 1
  • Götz Thomalla
    • 1
  • Hanna Braaß
    • 1
  • Christos Ganos
    • 1
  • Nicole David
    • 3
  • Ina Peiker
    • 3
  • Andreas K. Engel
    • 3
  • Tobias Bäumer
    • 1
    • 4
  • Alexander Münchau
    • 1
    • 4
  1. 1.Department of NeurologyUniversity Medical Center Hamburg-Eppendorf (UKE)HamburgGermany
  2. 2.Department of PsychiatryUniversity Medical Center Hamburg-Eppendorf (UKE)HamburgGermany
  3. 3.Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg-Eppendorf (UKE)HamburgGermany
  4. 4.Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of NeurogeneticsUniversity of LübeckLübeckGermany

Personalised recommendations