Journal of Autism and Developmental Disorders

, Volume 48, Issue 2, pp 442–449 | Cite as

Array-CGH Analysis in a Cohort of Phenotypically Well-Characterized Individuals with “Essential” Autism Spectrum Disorders

  • Eleonora Napoli
  • Serena Russo
  • Laura Casula
  • Viola Alesi
  • Filomena Alessandra Amendola
  • Adriano Angioni
  • Antonio Novelli
  • Giovanni Valeri
  • Deny Menghini
  • Stefano Vicari
Original Paper

Abstract

Copy-number variants (CNVs) are associated with susceptibility to autism spectrum disorder (ASD). To detect the presence of CNVs, we conducted an array-comparative genomic hybridization (array-CGH) analysis in 133 children with “essential” ASD phenotype. Genetic analyses documented that 12 children had causative CNVs (C-CNVs), 29 children had non-causative CNVs (NC-CNVs) and 92 children without CNVs (W-CNVs). Results on clinical evaluation showed no differences in cognitive abilities among the three groups, and a higher number of ASD symptoms and of non-verbal children in the C-CNVs group compared to the W-CNVs and NC-CNVs groups. Our results highlighted the importance of the array-CGH analyses and showed that the presence of specific CNVs may differentiate clinical outputs in children with ASD.

Keywords

ASD Cognitive development Clinical phenotype Children Genetic investigation CNVs 

Notes

Acknowledgments

We thank the families that participated in this study. The authors would like to thank Paola Giovanna Volpi for her help with the manuscript.

Funding

There was no funding for this paper.

Authors’ Contributions

EN participated the design of the study and coordination, performed the measurement and drafted the manuscript; SR conceived of the study, participated in its design and coordination and drafted the manuscript; LC participated in the design and coordination of the study, performed the measurement and helped to draft the manuscript; VA performed the measurement and participated in interpretation of the data; FAA performed the measurement; AA participated the design of the study, revised critically the manuscript and participated in interpretation of the data; AN participated the design of the study and interpretation of the data; GV participated the design of the study and coordination, interpretation of the data and helped to draft the manuscript; DM participated in the design, interpretation of the data, performed the statistical analysis and helped to draft the manuscript; SV participated the design of the study and coordination, interpretation of the data and helped to draft the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2017_3329_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 KB)

References

  1. Al-Mamari, W., Al-Saegh, A., Al-Kindy, A., Bruwer, Z., Al-Murshedi, F., & Al-Thihli, K. (2015). Diagnostic yield of chromosomal microarray analysis in a cohort of patients with autism spectrum disorders from a highly consanguineous population. Journal of Autism and Developmental Disorders, 45(8), 2323–2328. doi: 10.1007/s10803-015-2394-9. doi.CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association, & American Psychiatric Association. (2000). DSM-IV-TR: Diagnostic and statistical manual of mental disorders, text revision. Washington, DC: American Psychiatric Association.Google Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Publication.CrossRefGoogle Scholar
  4. Battaglia, A., Doccini, V., Bernardini, L., Novelli, A., Loddo, S., Capalbo, A., et al. (2013). Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. European Journal of Paediatric Neurology, 17(6), 589–599. doi: 10.1016/j.ejpn.2013.04.010.CrossRefPubMedGoogle Scholar
  5. Beaudet, A. L. (2013). The utility of chromosomal microarray analysis in developmental and behavioral pediatrics. Child Development, 84(1), 121–132. doi: 10.1111/cdev.12050.CrossRefPubMedGoogle Scholar
  6. Beaudet, A. L. (2014). Reaching a CNV milestone. Nature Genetics, 46(10), 1046–1048. doi: 10.1038/ng.3106.CrossRefPubMedGoogle Scholar
  7. Bremer, A., Giacobini, M., Eriksson, M., Gustavsson, P., Nordin, V., Fernell, E., et al. (2011). Copy number variation characteristics in subpopulations of patients with autism spectrum disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(2), 115–124. doi: 10.1002/ajmg.b.31142.CrossRefGoogle Scholar
  8. Buxbaum, J. D., Silverman, J. M., Smith, C. J., Greenberg, D. A., Kilifarski, M., Reichert, J., et al. (2002). Association between a GABRB3 polymorphism and autism. Molecular Psychiatry, 7(3), 311–316. doi: 10.1038/sj/mp/4001011.CrossRefPubMedGoogle Scholar
  9. Carreira, I. M., Ferreira, S. I., Matoso, E., Pires, L. M., Ferrão, J., Jardim, A., et al. (2015). Copy number variants prioritization after array-CGH analysis–a cohort of 1000 patients. Molecular Cytogenetics, 8(1), 103. doi  10.1186/s13039-015-0202-z.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Coe, B. P., Witherspoon, K., Rosenfeld, J. A., Van Bon, B. W., Vulto-van Silfhout, A. T., Bosco, P., et al. (2014). Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 46(10), 1063–1071. doi: 10.1038/ng.3092.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., et al. (2010). Origins and functional impact of copy number variation in the human genome. Nature, 464(7289), 704–712. doi: 10.1038/nature08516.CrossRefPubMedGoogle Scholar
  12. Eapen, V., Crncec, R., & Walter, A. (2013). Exploring links between genotypes, phenotypes, and clinical predictors of response to early intensive behavioral intervention in autism spectrum disorder. Frontiers in Human Neuroscience, 11(7), 1662–5161. doi: 10.3389/fnhum.2013.00567.Google Scholar
  13. Fombonne, E., Quirke, S., & Hagen, A. (2011). Epidemiology of pervasive developmental disorders. In D. G. Amaral, G. Dawson & D. H. Geschwind (Eds.), Autism spectrum disorders (pp. 90–111). New York: Oxford University Press.CrossRefGoogle Scholar
  14. Gotham, K., Pickles, A., & Lord, C. (2009). Standardizing ADOS scores for a measure of severity in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(5), 693–705. doi: 10.1007/s10803-008-0674-3.CrossRefPubMedGoogle Scholar
  15. Hogart, A., Wu, D., LaSalle, J. M., & Schanen, N. C. (2010). The comorbidity of autism with the genomic disorders of chromosome 15q11. 2-q13. Neurobiology of Disease, 38(2), 181–191. doi: 10.1016/j.nbd.2008.08.011.CrossRefPubMedGoogle Scholar
  16. Ingram, D. G., Takahashi, T. N., & Miles, J. H. (2008). Defining autism subgroups: a taxometric solution. Journal of Autism and Developmental Disorders, 38(5), 950–960.CrossRefPubMedGoogle Scholar
  17. Jacquemont, M. L., Sanlaville, D., Redon, R., Raoul, O., Cormier-Daire, V., Lyonnet, S., et al. (2006). Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. Journal of Medical Genetics, 43(11), 843–849. doi: 10.1136/jmg.2006.043166.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nature Reviews Neurology, 10(2), 74–81. doi: 10.1038/nrneurol.2013.278.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kaminsky, E. B., Kaul, V., Paschall, J., Church, D. M., Bunke, B., Kunig, D., et al. (2011). An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genetics in Medicine, 13(9), 777–784. doi: 10.1097/GIM.0b013e31822c79f9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kearney, H. M., Thorland, E. C., Brown, K. K., Quintero-Rivera, F., & South, S. T. (2011). American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genetics in Medicine, 13(7), 680–685. doi: 10.1097/GIM.0b013e3182217a3a.CrossRefPubMedGoogle Scholar
  21. Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. Lancet, 383(9920), 896–910. doi: 10.1016/S0140-6736(13)61539-1.CrossRefPubMedGoogle Scholar
  22. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., & DiLavore, P. C. .et al. (2000). The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. doi: 10.1023/A:1005592401947.CrossRefPubMedGoogle Scholar
  23. Lord, C., Rutter, M., & Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685. doi: 10.1007/BF02172145.CrossRefPubMedGoogle Scholar
  24. Luiz, D., Barnard, A., Knoesen, N., Kotras, N., Horrocks, S., McAlinden, P., et al. (2006). GMDS-ER 2–8—Griffiths Mental Development Scales—Extended Revised: 2 to 8 years. In C. Cianchetti & G. S. Fancello (Eds.), Firenze: Giunti Organizzazioni Speciali.Google Scholar
  25. Merikangas, A. K., Segurado, R., Heron, E. A., Anney, R. J. L., Paterson, A. D., Cook, E. H., et al. (2015). The phenotypic manifestations of rare genic CNVs in autism spectrum disorder. Molecular Psychiatry, 20(11), 1366–1372. doi: 10.1038/mp.2014.150.CrossRefPubMedGoogle Scholar
  26. Miles, J. H. (2011). Autism spectrum disorders—a genetics review. Genetics in Medicine, 13(4), 278–294. doi: 10.1097/GIM.0b013e3181ff67ba.CrossRefPubMedGoogle Scholar
  27. Miles, J. H., Takahashi, T. N., Bagby, S., Sahota, P. K., Vaslow, D. F., Wang, C. H., et al. (2005). Essential versus complex autism: Definition of fundamental prognostic subtypes. American Journal of Medical Genetics Part A, 135(2), 171–180. doi: 10.1002/ajmg.a.30590.CrossRefPubMedGoogle Scholar
  28. Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P., et al. (2010). Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. The American Journal of Human Genetics, 86(5), 749–764. doi: 10.1016/j.ajhg.2010.04.006.CrossRefPubMedGoogle Scholar
  29. Murdoch, J. D., & State, M. W. (2013). Recent developments in the genetics of autism spectrum disorders. Current Opinion in Genetics & Development, 23(3), 310–315. doi: 10.1016/j.gde.2013.02.003.CrossRefGoogle Scholar
  30. Oikonomakis, V., Kosma, K., Mitrakos, A., Sofocleous, C., Pervanidou, P., Syrmou, A., et al. (2016). Recurrent copy number variations as risk factors for autism spectrum disorders: analysis of the clinical implications. Clinical Genetics. doi: 10.1111/cge.12740.PubMedGoogle Scholar
  31. Ozgen, H. M., Staal, W. G., Barber, J. C., de Jonge, M. V., Eleveld, M. J., Beemer, F. A., et al. (2009). A novel 6.14 Mb duplication of chromosome 8p21 in a patient with autism and self mutilation. Journal of Autism and Developmental Disorders, 39(2), 322–329. doi: 10.1007/s10803-008-0627-x.CrossRefPubMedGoogle Scholar
  32. Ozonoff, S., Young, G. S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., et al. (2011). Recurrence risk for autism spectrum disorders: A Baby Siblings Research Consortium study. Pediatrics, 128(3), e488–e495.PubMedPubMedCentralGoogle Scholar
  33. Pang, A. W., MacDonald, J. R., Pinto, D., Wei, J., Rafiq, M. A., Conrad, D. F., et al. (2010). Towards a comprehensive structural variation map of an individual human genome. Genome Biology, 11(5), R52. doi: 10.1186/gb-2010-11-5-r52.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., et al. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304), 368–372.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Posthuma, D., & Polderman, T. J. (2013). What have we learned from recent twin studies about the etiology of neurodevelopmental disorders? Current Opinion in Neurology, 26(2), 111–121. doi: 10.1097/WCO.0b013e32835f19c3.CrossRefPubMedGoogle Scholar
  36. Postorino, V., Fatta, L. M., Sanges, V., Giovagnoli, G., De Peppo, L., Vicari, S., & Mazzone, L. (2016). Intellectual disability in autism spectrum disorder: Investigation of prevalence in an Italian sample of children and adolescents. Research in Developmental Disabilities, 48, 193–201. doi: 10.1016/j.ridd.2015.10.020.CrossRefPubMedGoogle Scholar
  37. Qiao, Y., Riendeau, N., Koochek, M., Liu, X., Harvard, C., Hildebrand, M. J., et al. (2009). Phenomic determinants of genomic variation in autism spectrum disorders. Journal of Medical Genetics, 46(10), 680–688. doi: 10.1136/jmg.2009.066795.CrossRefPubMedGoogle Scholar
  38. Roid, G., & Miller, L. (1997). Leiter international performance scale–revised. Wood Dale, IL: Stoelting.Google Scholar
  39. Ronald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: a decade of new twin studies. American Journal of Medical Genetics Part B, 156(3), 255–274. doi: 10.1002/ajmg.b.31159.CrossRefGoogle Scholar
  40. Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241. doi: 10.1038/nature10945.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schaefer, G. B. (2016). Clinical genetic aspects of autism spectrum disorders. International Journal of Molecular Sciences, 17(2), 180. doi: 10.3390/ijms17020180.CrossRefPubMedCentralGoogle Scholar
  42. Schaefer, G. B., & Mendelsohn, N. J. & Professional Practice and Guidelines Committee. (2013). Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genetics in Medicine, 15(5), 399–407. doi: 10.1038/gim.2013.32.CrossRefPubMedGoogle Scholar
  43. Schaefer, G. B., Starr, L., Pickering, D., Skar, G., DeHaai, K., & Sanger, W. G. (2010). Array comparative genomic hybridization findings in a cohort referred for an autism evaluation. Journal of Child Neurology, 25(12), 1498–1503. doi: 10.1177/0883073810370479.CrossRefPubMedGoogle Scholar
  44. Shaffer, L. G., McGowan-Jordan, J., & Schmid, M. (Eds.) (2013). ISCN 2013: An international system for human cytogenetic nomenclature (2013). Basel: Karger Medical and Scientific Publishers.Google Scholar
  45. Shen, Y., Dies, K. A., Holm, I. A., Bridgemohan, C., Sobeih, M. M., Caronna, E. B., et al. (2010). Clinical genetic testing for patients with autism spectrum disorders. Pediatrics, 125(4), e727–e735. doi: 10.1542/peds.2009-1684.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sorte, H. S., Gjevik, E., Sponheim, E., Eiklid, K. L., & Rødningen, O. K. (2013). Copy number variation findings among 50 children and adolescents with autism spectrum disorder. Psychiatric Genetics, 23(2), 61–69. doi: 10.1097/YPG.0b013e32835d718b.CrossRefPubMedGoogle Scholar
  47. Stankiewicz, P., & Lupski, J. R. (2010). Structural variation in the human genome and its role in disease. Annual Review of Medicine, 61, 437–455. doi: 10.1146/annurev-med-100708-204735.CrossRefPubMedGoogle Scholar
  48. Tabet, A. C., Verloes, A., Pilorge, M., Delaby, E., Delorme, R., Nygren, G., et al. (2015). Complex nature of apparently balanced chromosomal rearrangements in patients with autism spectrum disorder. Molecular Autism, 6(1), 19. doi: 10.1186/s13229-015-0015-2.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Eleonora Napoli
    • 1
  • Serena Russo
    • 2
  • Laura Casula
    • 1
  • Viola Alesi
    • 2
  • Filomena Alessandra Amendola
    • 1
  • Adriano Angioni
    • 2
  • Antonio Novelli
    • 2
  • Giovanni Valeri
    • 1
  • Deny Menghini
    • 1
  • Stefano Vicari
    • 1
  1. 1.Department of Neurosciences, Child Neuropsychiatry UnitBambino Gesù Children’s Hospital, IRCCSRomeItaly
  2. 2.Laboratory of Medical GeneticsBambino Gesù Children’s Hospital, IRCCSRomeItaly

Personalised recommendations