Journal of Autism and Developmental Disorders

, Volume 46, Issue 5, pp 1686–1698 | Cite as

Exploring What’s Missing: What Do Target Absent Trials Reveal About Autism Search Superiority?

  • Brandon Keehn
  • Robert M. Joseph
Original Paper


We used eye-tracking to investigate the roles of enhanced discrimination and peripheral selection in superior visual search in autism spectrum disorder (ASD). Children with ASD were faster at visual search than their typically developing peers. However, group differences in performance and eye-movements did not vary with the level of difficulty of discrimination or selection. Rather, consistent with prior ASD research, group differences were mainly the effect of faster performance on target-absent trials. Eye-tracking revealed a lack of left-visual-field search asymmetry in ASD, which may confer an additional advantage when the target is absent. Lastly, ASD symptomatology was positively associated with search superiority, the mechanisms of which may shed light on the atypical brain organization that underlies social-communicative impairment in ASD.


Autism Attention Visual search Eye-tracking 



This research was funded by NIDCD Grant U19 DC 03610 and by NIMH Grant K01 MH 073944. The authors are especially grateful to the children and families who participated in this study.

Author Contributions

Both authors made substantial contributions to the conception and design of the study. BK acquired the data, performed the statistical analyses, and drafted the manuscript. RMJ helped interpret the data and revised the manuscript. Both authors read and approved the final manuscript.


  1. APA. (2013). Diagnostic and statistical manual of mental disorders, 5th ed. Washington DC: American Psychological Association.Google Scholar
  2. Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the Autism Spectrum Disorder (ASD) advantage in visual tasks. Scientific Reports, 4, 4301.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bogte, H., Flamma, B., van der Meere, J., & van Engeland, H. (2007). Post-error adaptation in adults with high functioning autism. Neuropsychologia, 45(8), 1707–1714.CrossRefPubMedGoogle Scholar
  4. Chun, M. M., & Wolfe, J. M. (1996). Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology, 30(1), 39–78.CrossRefPubMedGoogle Scholar
  5. English, M. C., Maybery, M. T., & Visser, T. A. (2015). Individuals with autistic-like traits show reduced lateralization on a greyscales task. Journal of Autism and Developmental Disorders, 45(10), 3390–3395.CrossRefPubMedGoogle Scholar
  6. Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain, 135(Pt 3), 949–960.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fecteau, J. H., Enns, J. T., & Kingstone, A. (2000). Competition-induced visual field differences in search. Psychological Science, 11(5), 386–393.CrossRefPubMedGoogle Scholar
  8. Findlay, J. M. (1997). Saccade target selection during visual search. Vision Research, 37(5), 617–631.CrossRefPubMedGoogle Scholar
  9. Findlay, J. M., Brown, V., & Gilchrist, I. D. (2001). Saccade target selection in visual search: The effect of information from the previous fixation. Vision Research, 41(1), 87–95.CrossRefPubMedGoogle Scholar
  10. Foulsham, T., Gray, A., Nasiopoulos, E., & Kingstone, A. (2013). Leftward biases in picture scanning and line bisection: A gaze-contingent window study. Vision Research, 78, 14–25.CrossRefPubMedGoogle Scholar
  11. Gliga, T., Bedford, R., Charman, T., Johnson, M. H., & The BASIS Team. (2015). Enhanced visual search in infancy predicts emerging autism symptoms. Current Biology, 25(13), 1727–1730.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hessels, R. S., Hooge, I. T., Snijders, T. M., & Kemner, C. (2014). Is there a limit to the superiority of individuals with ASD in visual search? Journal of Autism and Developmental Disorders, 44(2), 443–451.CrossRefPubMedGoogle Scholar
  13. Hooge, I. T., & Erkelens, C. J. (1999). Peripheral vision and oculomotor control during visual search. Vision Research, 39(8), 1567–1575.CrossRefPubMedGoogle Scholar
  14. Joseph, R. M., Keehn, B., Connolly, C., Wolfe, J. M., & Horowitz, T. S. (2009). Why is visual search superior in autism spectrum disorder? Dev Sci, 12(6), 1083–1096.CrossRefPubMedGoogle Scholar
  15. Joseph, R. M., Tager-Flusberg, H., & Lord, C. (2002). Cognitive profiles and social-communicative functioning in children with autism spectrum disorder. Journal of Child Psychology and Psychiatry, 43(6), 807–821.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kaldy, Z., Giserman, I., Carter, A. S., & Blaser, E. (2013). The mechanisms underlying the ASD advantage in visual search. Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-013-1957-x.PubMedPubMedCentralGoogle Scholar
  17. Kaldy, Z., Kraper, C., Carter, A. S., & Blaser, E. (2011). Toddlers with Autism Spectrum Disorder are more successful at visual search than typically developing toddlers. Developmental Science, 14(5), 980–988.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman brief intelligence test (2nd ed.). Circle Pines, MN: American Guidance Service.Google Scholar
  19. Keehn, B., & Joseph, R. M. (2008). Impaired prioritization of novel onset stimuli in autism spectrum disorder. Journal of Child Psychology and Psychiatry, 49(12), 1296–1303.CrossRefPubMedGoogle Scholar
  20. Keehn, B., Müller, R. A., & Townsend, J. (2013a). Atypical attentional networks and the emergence of autism. Neuroscience and Biobehavioral Reviews, 37(2), 164–183.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Keehn, B., Shih, P., Brenner, L. A., Townsend, J., & Müller, R. A. (2013b). Functional connectivity for an “island of sparing” in autism spectrum disorder: An fMRI study of visual search. Human Brain Mapping, 34(10), 2524–2537.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Keehn, B., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2015). Atypical hemispheric specialization for faces in infants at risk for autism spectrum disorder. Autism Res, 8(2), 187–198.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kemner, C., van Ewijk, L., van Engeland, H., & Hooge, I. (2008). Brief report: Eye movements during visual search tasks indicate enhanced stimulus discriminability in subjects with PDD. Journal of Autism and Developmental Disorders, 38(3), 553–557.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). Autism diagnostic obervation schedule—WPS (ADOS-WPS). Los Angeles, CA: Western Psychological Services.Google Scholar
  25. Milne, E., Dunn, S. A., Freeth, M., & Rosas-Martinez, L. (2013). Visual search performance is predicted by the degree to which selective attention to features modulates the ERP between 350 and 600ms. Neuropsychologia, 51(6), 1109–1118.CrossRefPubMedGoogle Scholar
  26. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.CrossRefPubMedGoogle Scholar
  27. Nystrom, M., Andersson, R., Holmqvist, K., & van de Weijer, J. (2013). The influence of calibration method and eye physiology on eyetracking data quality. Behavior Research Methods, 45(1), 272–288.CrossRefPubMedGoogle Scholar
  28. O’Riordan, M. (2000). Superior modulation of activation levels of stimulus representations does not underlie superior discrimination in autism. Cognition, 77(2), 81–96.CrossRefPubMedGoogle Scholar
  29. O’Riordan, M. (2004). Superior visual search in adults with autism. Autism, 8(3), 229–248.CrossRefPubMedGoogle Scholar
  30. O’Riordan, M., & Plaisted, K. (2001). Enhanced discrimination in autism. Quarterly Journal of Experimental Psychology. A, 54(4), 961–979.CrossRefGoogle Scholar
  31. O’Riordan, M., Plaisted, K. C., Driver, J., & Baron-Cohen, S. (2001). Superior visual search in autism. Journal of Experimental Psychology: Human Perception and Performance, 27(3), 719–730.PubMedGoogle Scholar
  32. Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced visual search for a conjunctive target in autism: A research note. Journal of Child Psychology and Psychiatry, 39(5), 777–783.CrossRefPubMedGoogle Scholar
  33. Remington, A., Swettenham, J., Campbell, R., & Coleman, M. (2009). Selective attention and perceptual load in autism spectrum disorder. Psychological Science, 20(11), 1388–1393.CrossRefPubMedGoogle Scholar
  34. Remington, A., Swettenham, J. G., & Lavie, N. (2012). Lightening the load: Perceptual load impairs visual detection in typical adults but not in autism. Journal of Abnormal Psychology, 121(2), 544–551.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Russell, J., & Jarrold, C. (1998). Error-correction problems in autism: Evidence for a monitoring impairment? Journal of Autism and Developmental Disorders, 28(3), 177–188.CrossRefPubMedGoogle Scholar
  36. Rutter, M., Le Couteur, A., & Lord, C. (2003). Autism diagnostic interview—Revised. Los Angeles, CA: Western Psychological Services.Google Scholar
  37. Shen, J., Reingold, E. M., Pomplun, M., & Williams, D. L. (2003). Saccadic selectivity during visual search: The influence of central processing difficulty. In J. Hyona, R. Radach, & H. Deubel (Eds.), The Mind’s Eye: Cognitive and applied aspects of eye movement research. Amsterdam: Elsevier.Google Scholar
  38. Sokhadze, E., Baruth, J., El-Baz, A., Horrell, T., Sokhadze, G., Carroll, T., & Casanova, M. F. (2010). Impaired error monitoring and correction function in autism. Journal Neurotherapy, 14(2), 79–95.CrossRefGoogle Scholar
  39. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods Instruments & Computers, 31(1), 137–149.CrossRefGoogle Scholar
  40. Tager-Flusberg, H., & Joseph, R. M. (2003). Identifying neurocognitive phenotypes in autism. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 358(1430), 303–314.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wass, S. V., Forssman, L., & Leppanen, J. (2014). Robustness and precision: How data quality may influence key dependent variables in infant eye-tracker analyses. Infancy, 19(5), 427–460.CrossRefGoogle Scholar
  42. Williams, D. E., & Reingold, E. M. (2001). Preattentive guidance of eye movements during triple conjunction search tasks: The effects of feature discriminability and saccadic amplitude. Psychonomic Bulletin & Review, 8(3), 476–488.CrossRefGoogle Scholar
  43. Zelinsky, G. J. (1996). Using eye saccades to assess the selectivity of search movements. Vision Research, 36(14), 2177–2187.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Speech, Language, and Hearing SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Department of Psychological SciencesPurdue UniversityWest LafayetteUSA
  3. 3.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA

Personalised recommendations