Advertisement

Journal of Autism and Developmental Disorders

, Volume 46, Issue 2, pp 450–466 | Cite as

Ultra-Rapid Categorization of Meaningful Real-Life Scenes in Adults With and Without ASD

  • Steven Vanmarcke
  • Ruth Van Der Hallen
  • Kris Evers
  • Ilse Noens
  • Jean Steyaert
  • Johan Wagemans
Original Paper

Abstract

In comparison to typically developing (TD) individuals, people with autism spectrum disorder (ASD) appear to be worse in the fast extraction of the global meaning of a situation or picture. Ultra-rapid categorization [paradigm developed by Thorpe et al. (Nature 381:520–522, 1996)] involves such global information processing. We therefore tested a group of adults with and without ASD, without intellectual disability, on a set of ultra-rapid categorization tasks. Individuals with ASD performed equally well as TD individuals except when the task required the categorization of social interactions. These results argue against a general deficit in ultra-rapid gist perception in people with ASD, while suggesting a more specific problem with the fast processing of information about social relations.

Keywords

Autism spectrum disorder Vision research Ultra-rapid categorization Theory of mind Reverse hierarchy theory 

Notes

Acknowledgments

This work was supported by the Research Foundation-Flanders (FWO) to Steven Vanmarcke and long-term structural funding by the Flemish Government (METH/08/02) to Johan Wagemans. The authors would like to thank Nadège Macé, Michelle Fabre-Thorpe and Simon Thorpe for providing us with their stimulus material used in previous papers (e.g., Macé et al. 2009). A substantial subset of these images was used in the animal/vehicle task. We also thank Maarten Demeyer and Bart Machilsen for their help with programming in PsychoPy, Thomas Schouteden for his assistance with data collection and all participants for their time and contribution to this research.

Author Contributions

Author contribution SV conceived of the study, participated in its design, coordination, measurement and analysis. He also drafted the manuscript; RVDH, KE and JW participated in the design and interpretation of the data; KE participated in the design and interpretation of the data; IN participated in the design and interpretation of the data; JS participated in the design and interpretation of the data; JW participated in the design, analysis and interpretation of the data. All authors read and approved the final manuscript.

Supplementary material

10803_2015_2583_MOESM1_ESM.doc (326 kb)
Supplementary material 1 (DOC 326 kb)
10803_2015_2583_MOESM2_ESM.tiff (875 kb)
Supplementary material 2 (TIFF 875 kb)
10803_2015_2583_MOESM3_ESM.tiff (875 kb)
Supplementary material 3 (TIFF 875 kb)
10803_2015_2583_MOESM4_ESM.tiff (875 kb)
Supplementary material 4 (TIFF 875 kb)
10803_2015_2583_MOESM5_ESM.tiff (875 kb)
Supplementary material 5 (TIFF 875 kb)
10803_2015_2583_MOESM6_ESM.tiff (875 kb)
Supplementary material 6 (TIFF 875 kb)
10803_2015_2583_MOESM7_ESM.tiff (875 kb)
Supplementary material 7 (TIFF 875 kb)

References

  1. Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8, 457–464.CrossRefPubMedGoogle Scholar
  2. Aitkin, M. (1999). A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 117–128.CrossRefPubMedGoogle Scholar
  3. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), Proceedings of the 2nd international symposium on information theory (pp. 267–281). Budapest: Akadémiai Kiadó.Google Scholar
  4. Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4, 267–278.CrossRefPubMedGoogle Scholar
  5. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders DSM-IV-TR (4th ed.). Washington: American Psychiatric.Google Scholar
  6. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders DSM-IV-TR (5th ed.). Washington: American Psychiatric.Google Scholar
  7. Auyeung, B., Wheelwright, S., Allison, C., Atkinson, M., Samarawickrema, N., & Baron-Cohen, S. (2009). The children’s empathy quotient and systemizing quotient: Sex differences in typical development and in autism spectrum conditions. Journal of Autism and Developmental Disorders, 39, 1509–1521.CrossRefPubMedGoogle Scholar
  8. Bacon-Macé, N., Macé, M. J.-M., Fabre-Thorpe, M., & Thorpe, S. J. (2005). The time course of visual processing: Backward masking and natural scene categorisation. Vision Research, 45, 1459–1469.CrossRefPubMedGoogle Scholar
  9. Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory mind. Cambridge, MA: MIT Press.Google Scholar
  10. Baron-Cohen, S. (2001). Theory of mind and autism: A review. International Review of Research in Mental Retardation, 23, 169–184.CrossRefGoogle Scholar
  11. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42, 241–251.CrossRefPubMedGoogle Scholar
  12. Bates, D. (2005). Fitting linear models in R. R News, 5, 27–30.Google Scholar
  13. Batty, M., & Taylor, M. J. (2001). Visual categorization during childhood: An ERP study. Psychophysiology, 39, 482–490.CrossRefGoogle Scholar
  14. Begeer, S., Malle, B. F., Nieuwland, M. S., & Keysar, B. (2010). Using theory of mind to represent and take part in social interactions: Comparing individuals with high-functioning autism and typically developing controls. European Journal of Developmental Psychology, 7, 104–122.CrossRefGoogle Scholar
  15. Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Sciences, 10, 258–264.CrossRefPubMedGoogle Scholar
  16. Blair, R. J. R., Frith, U., Smith, N., Abell, F., & Cipolotti, L. (2002). Fractionation of visual memory: Agency detection and its impairment in autism. Neuropsychologia, 40, 108–118.CrossRefPubMedGoogle Scholar
  17. Bowler, D. M. (1992). “Theory of mind” in Asperger’s Syndrome. Journal of Child Pyschology and Psychiatry, 33, 877–893.CrossRefGoogle Scholar
  18. Burnett, H. G., Panis, S., Wagemans, J., & Jellema, T. (2014). Impaired identification of impoverished animate but not inanimate objects in adults with high-functioning autism spectrum disorder. Autism Research, 1, 1–9. doi: 10.1002/aur.1412.CrossRefGoogle Scholar
  19. Carlson, S. M., Koenig, M. A., & Harms, A. B. (2013). Theory of mind. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 391–402.PubMedGoogle Scholar
  20. Chaminade, T., Fonseca, D. D., Rosset, D., Cheng, G., & Deruelle, C. (2015). Atypical modulation of hypothalamic activity by social context in ASD. Research in Autism Spectrum Disorders, 10, 41–50.CrossRefGoogle Scholar
  21. Church, B., Krauss, M. S., Lopata, C., Toomey, J. A., Thomeer, M. L., et al. (2010). Atypical categorization in children with high-functioning autism spectrum disorder. Psychonomic Bulletin & Review, 17, 864–868.CrossRefGoogle Scholar
  22. Crouzet, S. M., Joubert, O. R., Thorpe, S. J., & Fabre-Thorpe, M. (2012). Animal detection precedes access to scene category. PLoS One, 7, 1–9.CrossRefGoogle Scholar
  23. Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection in just 100 ms. Journal of Vision, 10, 1–17. doi: 10.1167/10.4.16.CrossRefPubMedGoogle Scholar
  24. Dahlgren, S. O., & Trillingsgaard, A. (1996). Theory of mind in nonretarded children with autism and Asperger’s syndrome. A research note. Journal of Child Psychology and Psychiatry, 37, 759–763.CrossRefPubMedGoogle Scholar
  25. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48, 497–507.CrossRefPubMedGoogle Scholar
  26. Edgin, J. O., & Pennington, B. F. (2005). Spatial cognition in autism spectrum disorders: Superior, impaired or just intact? Journal of Autism and Developmental Disorders, 35, 729–745.CrossRefPubMedGoogle Scholar
  27. Edwards, D. J., Perlman, A., & Reed, P. (2012). Unsupervised categorization in a sample of children with autism spectrum disorders. Research in Developmental Disabilities, 33, 1264–1269.CrossRefPubMedGoogle Scholar
  28. Evers, K., Panis, S., Torfs, K., Steyaert, J., Noens, I., & Wagemans, J. (2014). Disturbed interplay between mid-and high-level vision in ASD? Evidence from a contour identification task with everyday objects. Journal of Autism and Developmental Disorders, 44, 801–815.CrossRefPubMedGoogle Scholar
  29. Falck-Ytter, T., & von Hofsten, C. (2011). How special is social looking in ASD: A review. Progress in Brain Research, 189, 46–55.Google Scholar
  30. Fletcher-Watson, S., Leekam, S. R., Benson, V., Frank, M. C., & Findlay, J. M. (2009). Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia, 47, 248–257.CrossRefPubMedGoogle Scholar
  31. Frith, U. (2003). Autism: Explaining the enigma (2nd ed.). Oxford: Blackwell.Google Scholar
  32. Frith, U., & Happé, F. (1994). Autism: Beyond “theory of mind”. Cognition, 50, 115–132.CrossRefPubMedGoogle Scholar
  33. Froehlich, A. L., Anderson, J. S., Bigler, E. D., Miller, J. S., Lange, N. T., DuBray, M. B., et al. (2012). Intact prototype formation but impaired generalization in autism. Autism Spectrum Disorders, 6, 921–930.CrossRefGoogle Scholar
  34. Gastgeb, H. Z., & Strauss, M. S. (2012). Categorization in ASD: The role of typicality and development. Perspectives on Language Learning and Education, 19, 66–74. doi: 10.1044/lle19.2.66.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Golan, O., Baron-Cohen, S., Hill, J. J., & Golan, Y. (2006). The “reading the mind in films” task: Complex emotion recognition in adults with and without autism spectrum conditions. Social Neuroscience, 1, 111–123. doi: 10.1080/17470910600980986.CrossRefPubMedGoogle Scholar
  36. Guillon, Q., Hadjikhani, N., Baduel, S., & Rogé, B. (2014). Visual social attention in autism spectrum disorder: Insights from eye tracking studies. Neuroscience and Biobehavioral Reviews, 42, 279–297. doi: 10.3758/BF03193726.CrossRefPubMedGoogle Scholar
  37. Happé, F., & Booth, R. (2008). The power of the positive: Revisiting weak coherence in autism spectrum disorders. The Quarterly Journal of Experimental Psychology, 61, 50–63.CrossRefPubMedGoogle Scholar
  38. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25.CrossRefPubMedGoogle Scholar
  39. Heavey, L., Phillips, W., Baron-Cohen, S., & Rutter, M. (2000). The awkward moments test: A naturalistic measure of social understanding in autism. Journal of Autism and Developmental Disorders, 30, 225–236.CrossRefPubMedGoogle Scholar
  40. Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791–804.CrossRefPubMedGoogle Scholar
  41. Humphreys, K., Minshew, N., Leonard, G. L., & Behrmann, M. (2007). A fine-grained analysis of facial expression processing in high-functioning adults with autism. Neuropsychologia, 45, 685–695. doi: 10.1016/S0042-6989(99)00163-7.CrossRefPubMedGoogle Scholar
  42. Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Amsterdam: Elsevier.Google Scholar
  43. Joubert, O. R., Rousselet, G. A., Fabre-Thorpe, M., & Fize, D. (2009). Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise. Journal of Vision, 9, 1–16. doi: 10.1167/9.1.2.CrossRefPubMedGoogle Scholar
  44. Joubert, O. R., Rousselet, G. A., Fize, D., & Fabre-Thorpe, M. (2007). Processing scene context: Fast categorization and object interference. Vision Research, 47, 3286–3297.CrossRefPubMedGoogle Scholar
  45. Kadar, I., & Ben-Shahar, O. (2012). A perceptual paradigm and psychophysical evidence for hierarchy in scene gist processing. Journal of Vision, 12, 1–17. doi: 10.1167/12.13.16.CrossRefGoogle Scholar
  46. Koldewyn, K., Jiang, Y. V., Weigelt, S., & Kanwisher, N. (2013). Global/local processing in autism: Not a disability, but a disinclination. Journal of Autism and Developmental Disorders, 43, 2329–2340.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services.Google Scholar
  48. Loschky, L. C., & Larson, A. M. (2008). Localized information is necessary for scene categorization, including the natural/man-made distinction. Journal of Vision, 8, 1–9. doi: 10.1167/8.1.4.CrossRefPubMedGoogle Scholar
  49. Loth, E., Gomez, J. C., & Happé, F. (2010). When seeing depends on knowing: Aduts with autism spectrum conditions show diminished top-down processes in the visual perception of degraded faces but not degraded objects. Neuropsychologia, 48, 1227–1236. doi: 10.1016/j.neuropsychologia.2009.12.023.CrossRefPubMedGoogle Scholar
  50. Macé, M. J.-M., Joubert, O. R., Nespoulous, J.-L., & Fabre-Thorpe, M. (2009). The time course of visual categorizations: You spot the animal faster than the bird. PLoS One, 4, 1–12. doi: 10.1371/journal.pone.0005927.CrossRefGoogle Scholar
  51. Mack, M. L., & Palmeri, T. J. (2010). Modeling categorization of scenes containing consistent versus inconsistent objects. Journal of Vision, 10, 1–11. doi: 10.1167/10.3.11.CrossRefPubMedGoogle Scholar
  52. Mackinlay, R., Charman, T., & Karmiloff-Smith, A. (2006). High functioning children with autism spectrum disorder: A novel test of multitasking. Brain and Cognition, 61, 14–24.CrossRefPubMedGoogle Scholar
  53. McArdle, B. H. (1987). The significance of differences between means. A simulation study. Comparative Biochemistry and Physiology, 87A, 979–982.CrossRefGoogle Scholar
  54. McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 6, 285–292.CrossRefGoogle Scholar
  55. Milne, E., & Szczerbinski, M. (2009). Global and local perceptual style, field-independence, and central coherence: An attempt at concept validation. Advances in Cognitive Psychology, 5, 1–26. doi: 10.2478/v10053-008-0062-8.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Mottron, L., & Burack, J. (2006). Autism: A different perception. Journal of Autism and Developmental Disorders, 36, 1–3.CrossRefGoogle Scholar
  57. Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43.CrossRefPubMedGoogle Scholar
  58. Noens, I., De la Marche, W., & Scholte, E. (2012). SRS-A—Screeningslijst voor autismespectrumstoornissen Handleiding. Amsterdam: Hogrefe Uitgevers B.V.Google Scholar
  59. Peirce, J. W. (2008). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2, 1–8. doi: 10.3389/neuro.11.010.2008.CrossRefGoogle Scholar
  60. Plaisted, K. C. (2001). Reduced generalization in autism: An alternative to weak central coherence. In J. A. Burack, T. Charman, N. Yirmiya, & P. R. Zelazo (Eds.), The development of autism: Perspectives from theories and research (pp. 149–169). Mahwah, NJ: Erlbaum.Google Scholar
  61. Plaisted, K. C., O’Riordan, M. A., & Baron-Cohen, S. (1998). Enhanced discrimination of novel highly similar stimuli by adults with autism during a perceptual learning task. Journal of Child Psychology and Psychiatry, 39, 765–775.CrossRefPubMedGoogle Scholar
  62. Poncet, M., & Fabre-Thorpe, M. (2014). Stimulus duration and diversity do not reverse the advantage for superordinate-level representations: The animal is seen before the bird. European Journal of Neuroscience, 9, 1508–1516.CrossRefGoogle Scholar
  63. Praß, M., Grimsen, C., König, M., & Fahle, M. (2014). Ultra rapid object categorization: Effects of level, animacy and context. PLoS One, 8, 1–10. doi: 10.1371/journal.pone.0068051.Google Scholar
  64. R Core Team. (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN: 3-900051-07-0.Google Scholar
  65. Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.CrossRefGoogle Scholar
  66. Rousselet, G., Joubert, O., & Fabre-Thorpe, M. (2005). How long to get to the ‘gist’ of real world natural scenes? Visual Cognition, 12, 852–877.CrossRefGoogle Scholar
  67. Sacrey, L.-A. R., Germani, T., Bryson, S. E., & Zwaigenbaum, L. (2014). Reaching and grasping in autism spectrum disorder: A review of recent literature. Frontiers in Neurology, 5, 1–12. doi: 10.3389/fneur.2014.00006.CrossRefGoogle Scholar
  68. Sattler, J. M. (2001). Assessment of children: Cognitive applications (4th ed.). San Diego, CA: Jerome M. Sattler.Google Scholar
  69. Schneider, D., Lam, R., Bayliss, A. P., & Dux, P. E. (2012). Cognitive load disrupts implicit theory-of-mind processing. Psychological Science, 23, 842–847. doi: 10.1177/0956797612439070.CrossRefPubMedGoogle Scholar
  70. Schneider, D., Slaughter, V. P., Bayliss, A. P., & Dux, P. E. (2013). A temporally sustained implicit theory of mind deficit in autism spectrum disorders. Cognition, 129, 410–417.CrossRefPubMedGoogle Scholar
  71. Scholte, E., & Noens, I. (2011). BRIEF-A. Vragenlijst over executieve functies bij volwassenen. Amsterdam: Hogrefe Uitgevers B.V.Google Scholar
  72. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–466.CrossRefGoogle Scholar
  73. Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5, 195–200.CrossRefGoogle Scholar
  74. Seltzer, M. M., Shattuck, P., Abbeduto, L., & Greenberg, J. S. (2004). Trajectory of development in adolescents and adults with autism. Mental Retardation and Developmental Disabilities Research Reviews, 10, 234–247.CrossRefPubMedGoogle Scholar
  75. Senju, A., Southgate, V., Miura, Y., Matsui, T., Hasegawa, T., Tojo, Y., et al. (2010). Absence of spontaneous action anticipation by false belief attribution in children with autism spectrum disorder. Development and Psychopathology, 22, 353–360.CrossRefPubMedGoogle Scholar
  76. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49, 2705–2739.CrossRefPubMedGoogle Scholar
  77. Solomon, M., Ozonoff, S. J., Ursu, S., Ravizza, S., Cummings, N., Ly, S., et al. (2009). The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia, 47, 2515–2526.PubMedCentralCrossRefPubMedGoogle Scholar
  78. South, M., Ozonoff, S., & McMahon, W. M. (2007). The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum. Autism, 11, 437–451.CrossRefPubMedGoogle Scholar
  79. Spek, A. A., Scholte, E. M., & Van Berckelaer-Onnes, I. A. (2011). Local information processing in adults with high functioning autism and Asperger syndrome: The usefulness of neuropsychological tests and self-reports. Journal of Autism and Developmental Disorders, 41, 859–869.PubMedCentralCrossRefPubMedGoogle Scholar
  80. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.CrossRefPubMedGoogle Scholar
  81. Tyler, L. K., Stamatakis, E., Bright, P., Acres, K., Abdallah, S., Rodd, J. M., et al. (2004). Processing objects at different levels of specificity. Journal of Cognitive Neuroscience, 16, 351–362.Google Scholar
  82. Uljarevic, M., & Hamilton, A. (2013). Recognition of emotions in autism: A formal meta-analysis. Journal of Autism and Developmental Disorders, 43, 1517–1526.CrossRefPubMedGoogle Scholar
  83. Van der Hallen, R., Evers, K., Brewaeys, K., Van Den Noortgate, W., & Wagemans, J. (2015). Global processing takes time: A meta-analysis on local-global visual processing in ASD. Psychological Bulletin, 141, 549–573. doi: 10.1037/bul0000004.CrossRefPubMedGoogle Scholar
  84. Van Ravenzwaaij, D., Brown, S., & Wagenmakers, E.-J. (2011). An integrated perspective on the relation between response speed and intelligence. Cognition, 119, 381–393.CrossRefPubMedGoogle Scholar
  85. Vanmarcke, S., & Wagemans, J. (2015). Rapid gist perception of meaningful real-life scenes: Exploring individual and gender differences in multiple categorization tasks. i-Perception, 6, 17–38. doi: 10.1068/i0682.CrossRefGoogle Scholar
  86. VanRullen, R. (2011). Four common conceptual fallacies in mapping the time course of recognition. Frontiers in Psychology, 2, 1–6. doi: 10.3389/fpsyg.2011.00365.Google Scholar
  87. VanRullen, R., & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid visual categorisation of natural and artifactual objects. Perception, 30, 655–668.CrossRefPubMedGoogle Scholar
  88. Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy. European Journal of Cognitive Psychology, 114, 830–841.Google Scholar
  89. Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54, 426–482.CrossRefGoogle Scholar
  90. Wallace, G. L., Case, L. K., Harms, M. B., Silvers, J. A., Kenworthy, L., & Martin, A. (2011). Diminished sensitivity to sad facial expressions in high functioning autism spectrum disorders is associated with symptomatology and adaptive functioning. Journal of Autism and Developmental Disorders, 41, 1475–1486. doi: 10.1007/s10803-010-1170-0.PubMedCentralCrossRefPubMedGoogle Scholar
  91. Wechsler, D. (1997). Wechsler adult intelligence scale (3rd ed.). San Antonio: The Psychological Corporation.Google Scholar
  92. Wheelwright, S., Baron-Cohen, S., Goldenfeld, N., Delaney, J., Fine, D., Smith, R., et al. (2006). Predicting autism spectrum quotient (AQ) from the systemizing quotient-revised (SQ-R) and empathy quotient (EQ). Brain Research, 1079, 47–56.CrossRefPubMedGoogle Scholar
  93. Wichmann, F. A., Braun, D. I., & Gegenfurtner, K. R. (2006). Phase noise and the classification of natural images. Vision Research, 46, 1520–1529.CrossRefPubMedGoogle Scholar
  94. Wichmann, F. A., Drewes, J., Rosas, P., & Gegenfurtner, K. R. (2010). Animal detection in natural scenes: Critical features revisited. Journal of Vision, 10, 1–27. doi: 10.1167/10.4.6.CrossRefPubMedGoogle Scholar
  95. Zilbovicius, M., Meresse, I., Chabane, N., Brunelle, F., Samson, Y., & Boddaert, N. (2006). Autism, the superior temporal sulcus and social perception. Trends in Neurosciences, 29, 359–366.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Steven Vanmarcke
    • 1
    • 3
  • Ruth Van Der Hallen
    • 1
    • 2
    • 3
  • Kris Evers
    • 1
    • 2
    • 3
  • Ilse Noens
    • 3
    • 4
    • 5
  • Jean Steyaert
    • 2
    • 3
  • Johan Wagemans
    • 1
    • 3
  1. 1.Laboratory of Experimental Psychology, Department of Brain and CognitionUniversity of Leuven (KU Leuven)LouvainBelgium
  2. 2.Department of Child PsychiatryUPC-KU LeuvenLouvainBelgium
  3. 3.Leuven Autism Research (LAuRes)KU LeuvenLouvainBelgium
  4. 4.Parenting and Special Education Research UnitKU LeuvenLouvainBelgium
  5. 5.Psychiatric and Neurodevelopmental Genetics UnitMassachusetts General HospitalBostonUSA

Personalised recommendations