Advertisement

Journal of Autism and Developmental Disorders

, Volume 45, Issue 4, pp 988–1000 | Cite as

Spatial Relative Risk Patterns of Autism Spectrum Disorders in Utah

  • Amanda V. Bakian
  • Deborah A. Bilder
  • Hilary Coon
  • William M. McMahon
Original Paper

Abstract

Heightened areas of spatial relative risk for autism spectrum disorders (ASD), or ASD hotspots, in Utah were identified using adaptive kernel density functions. Children ages four, six, and eight with ASD from multiple birth cohorts were identified by the Utah Registry of Autism and Developmental Disabilities. Each ASD case was gender-matched to 20 birth cohort controls. Demographic and socioeconomic characteristics of children born inside versus outside ASD hotspots were compared. ASD hotspots were found in the surveillance area for all but one birth cohort and age group sample; maximum relative risk in these hotspots ranged from 1.8 to 3.0. Associations were found between higher socioeconomic status and birth residence in an ASD hotspot in five out of six birth cohort and age group samples.

Keywords

Ascertainment age Autism spectrum disorders Diagnostic age Maternal residential birth address Socioeconomic status Spatial analysis Race/ethnicity 

Notes

Acknowledgments

Autism surveillance data was obtained through Centers for Disease Control and Prevention Cooperative Agreement UR3DD000685-03. Research analysis was supported by the Utah Registry of Autism and Developmental Disabilities, the National Institute of Mental Health of the National Institutes of Health under Award Number R01MH094400, and University of Utah Department of Psychiatry funds. Thank you to Drs. Harper Randall, Paul Carbone, Marc Babitz, Eric Fombonne, Barry Nangle and Sam LeFevre for feedback on earlier versions of this manuscript. Brian Robison provided editorial assistance. We are extremely grateful to our health and education data sources for their data contributions.

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical standard

Approval to conduct this research was granted by the University of Utah and Utah Department of Health’s Institutional Review Boards. This manuscript does not contain clinical studies or patient data.

Supplementary material

10803_2014_2253_MOESM1_ESM.pdf (167 kb)
Supplementary material 1 (PDF 167 kb)

References

  1. Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: on the threshold of new neurobiology. Nature Reviews Genetics, 9, 341–355.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Altevogt, B. M., Hanson, S. L., & Leshner, A. I. (2008). Autism and the environment: Challenges and opportunities for research. Pediatrics, 121(6), 1225–1229.CrossRefPubMedGoogle Scholar
  3. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57(1), 289–300.Google Scholar
  4. Besag, J., & Newell, J. (1991). The detection of clusters in rare diseases. Journal of the Royal Statistical Society. Series A, 154(Part 1), 143–155.Google Scholar
  5. Bhasin, T. K., & Schendel, D. (2007). Sociodemographic risk factors for autism in a US metropolitan area. Journal of Autism and Developmental Disorders, 37(4), 667–677.CrossRefPubMedGoogle Scholar
  6. Bilder, D. A., Bakian, A. V., Viskochil, J., Clark, E. A. S., Botts, E. B., Smith, K. R., et al. (2013). Maternal prenatal weight gain and autism spectrum disorders. Pediatrics. doi: 10.1542/peds.2013-1188.
  7. Bilder, D., Pinborough-Zimmerman, J., Miller, J., & McMahon, W. (2009). Prenatal, perinatal, and neonatal factors associated with autism spectrum disorder. Pediatrics, 123(5), 1293–1300.CrossRefPubMedGoogle Scholar
  8. Bithell, J. F. (1990). An application of density estimation to geographical epidemiology. Statistics in Medicine, 9(6), 691–701.CrossRefPubMedGoogle Scholar
  9. Bromley, R. L., Mawer, G., Clayton-Smith, J., & Baker, G. A. (2008). Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology, 71(23), 1923–1924.CrossRefPubMedGoogle Scholar
  10. Burd, L., Fisher, W., & Kerbeshian, J. (1987). A prevalence study of pervasive developmental disorders in North Dakota. Journal of the American Academy of Child and Adolescent Psychiatry, 26(5), 700–703.CrossRefPubMedGoogle Scholar
  11. Canfield, M. A., Ramadhani, T. A., Langlois, P. H., & Waller, D. K. (2006). Residential mobility patterns and exposure misclassification in epidemiologic studies of birth defects. Journal of Exposure Science & Environmental Epidemiology, 16(6), 538–543.CrossRefGoogle Scholar
  12. Centers for Disease Control and Prevention, Autism and Developmental Disabilities Monitoring Network Year 2008 Principal Investigators (CDC). (2012). Prevalence of autism spectrum disorders-Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. MMWR Surveillance Summary, 61(3), 1–19.Google Scholar
  13. Centers for Disease Control and Prevention, Autism and Developmental Disabilities Monitoring Network Year 2008 Principal Investigators (CDC). (2014). Prevalence of autism spectrum disorder among children aged 8 years-Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2010. MMWR Surveillance Summary, 63(2), 1–21.Google Scholar
  14. Croen, L. A., Grether, J. K., & Selvin, S. (2002). Descriptive epidemiology of autism in a California population: Who is at risk? Journal of Autism and Developmental Disorders, 32(3), 217–224.CrossRefPubMedGoogle Scholar
  15. Croen, L. A., Grether, J. K., Yoshida, C. K., Odouli, R., & Hendrick, V. (2011). Antidepressant use during pregnancy and childhood Autism Spectrum Disorders. Archives of General Psychiatry, 68(11), 1104–1112.CrossRefPubMedGoogle Scholar
  16. Croen, L. A., Najjar, D. V., Bireman, B., & Brether, J. K. (2007). Maternal and paternal age and risk of autism spectrum disorders. Archieves of Pediatrics and Adolescent Medicine, 161(4), 334–340.CrossRefGoogle Scholar
  17. Davies, T. M., & Hazelton, M. L. (2010). Adaptive kernel estimation of spatial relative risk. Statistics in Medicine, 29(23), 2423–2437.PubMedGoogle Scholar
  18. Davies, T. M., Hazelton, M. L., Marshall, J. C. (2011). Sparr: Analyzing spatial relative risk using fixed and adaptive kernel density estimation in R. Journal of Statistical Software, 39(1), 1–14.Google Scholar
  19. Downey, D. J., & Timberlake, M. F. (2006). Diversity in deseret: Race/ethnic segregation and inequality in Utah. In C. D. Zick & K. S. Smith (Eds.), Utah in the new millennium: A demographic perspective (pp. 203–215). Salt Lake City, UT: University of Utah Press.Google Scholar
  20. Durkin, M. S., Maenner, M. J., Meaney, F. J., Levy, S. E., DiGuiseppi, C., Nicholas, J. S., et al. (2010). Socioeconomic inequality in the prevalence of Autism Spectrum Disorder: Evidence from a U.S. cross-sectional study. PLoS ONE, 5(7), 1–8.CrossRefGoogle Scholar
  21. Fernando, W. T. P. S., & Hazelton, M. L. (2014). Generalizing the spatial relative risk function. Spatial and Spatio-temporal Epidemiology, 8, 1–10.CrossRefGoogle Scholar
  22. Fiscella, K., & Williams, D. R. (2004). Health disparities based on socioeconomic inequalities: implications for urban health care. Academic Medicine, 79(12), 1139–1147.CrossRefPubMedGoogle Scholar
  23. Fombonne, E. (2003). Epidemiological surveys of autism and other pervasive developmental disorders: An update. Journal of Autism and Developmental Disorders, 33(4), 365–382.CrossRefPubMedGoogle Scholar
  24. Fombonne, E., Du Mazaubrun, C., Cans, C., & Grandjean, H. (1997). Autism and associated medical disorders in a French epidemiological survey. Journal of the American Academy of Child and Adolescent Psychiatry, 36(11), 1561–1569.PubMedGoogle Scholar
  25. Gardner, B. R., Strickland, M. J., & Correa, A. (2007). Application of the automated spatial surveillance program to birth defects surveillance data. Birth Defects Research Part A, 79(7), 559–564.CrossRefGoogle Scholar
  26. Gatrell, A. C. (2002). Geographies of health: An introduction. Oxford, UK: Wiley-Blackwell.Google Scholar
  27. Grady, S. C. (2006). Racial disparities in low birthweight and the contribution of residential segregation: A multilevel analysis. Social Science and Medicine, 63(12), 3013–3029.CrossRefPubMedGoogle Scholar
  28. Grether, J. K., Anderson, M. C., Croen, L. A., Smith, D., & Windham, G. C. (2009). Risk of autism and increasing maternal and paternal age in a large North American population. American Journal of Epidemiology, 170(9), 1118–1126.CrossRefPubMedGoogle Scholar
  29. Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102.CrossRefPubMedGoogle Scholar
  30. Hastie, T., & Tibshirani, R. (1990). Generalized additive models. New York: Chapman and Hall.Google Scholar
  31. Hazelton, M. L., & Davies, T. M. (2009). Inference based on kernel estimates of the relative risk function in geographical epidemiology. Biometrical Journal, 51(1), 98–109.CrossRefPubMedGoogle Scholar
  32. Hertz-Picciotto, I., Croen, L. A., Hansen, R., Jones, C. R., van de Water, J., & Pessah, I. N. (2006). The CHARGE study: An epidemiologic investigation of genetic and environmental factors contributing to autism. Environmental Health Perspectives, 114(7), 1119–1125.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Hoffman, K., Kalbrenner, A. E., Vieira, V. M., Daniels, J. L. (2012). The spatial distribution of known predictors of autism spectrum disorders impacts geographic variability in prevalence in central North Carolina. Environmental Health, 11, 80. doi: 10.1186/1476-069X-11-80.
  34. Hoffman, K., Vieira, V. M., Daniels, J. L. (2013). Brief report: Diminishing geographic variability in autism spectrum disorders over time? Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-013-1907-7.
  35. Kalkbrenner, A. E., Daniels, J. L., Chen, J., Poole, C., Emch, M., & Morrissey, J. (2010). Perinatal exposure to hazardous air pollutants and autism spectrum disorders at age 8. Epidemiology, 21(5), 631–641.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Kelsall, J. E., & Diggle, P. J. (1995a). Kernel estimation of relative risk. Bernoulli, 1(1–2), 3–16.CrossRefGoogle Scholar
  37. Kelsall, J. E., & Diggle, P. J. (1995b). Non-parametric estimation of spatial variation in relative risk. Statistics in Medicine, 14(21–22), 2335–2342.CrossRefPubMedGoogle Scholar
  38. Kuldorff, M. (1997). Spatial scan statistic. Communications in statistics-theory and methods, 26(6), 1481–1496.CrossRefGoogle Scholar
  39. Larsson, H. J., Eaton, W. W., Madsen, K. M., Vestergaard, M., Olesen, A. V., Agerbo, E., et al. (2005). Risk factors for autism: perinatal factors, parental psychiatric history, and socioeconomic status. American Journal of Epidemiology, 161(10), 916–925.CrossRefPubMedGoogle Scholar
  40. Lee, M. (2009). Neighborhood residential segregation and mental health: A multilevel analysis on Hispanic Americans in Chicago. Social Science and Medicine, 68(11), 1975–1984.CrossRefPubMedGoogle Scholar
  41. Liptak, G. S., Benzoni, L. B., Mruzek, D. W., Nolan, K. W., Thingvoll, M. A., Wade, C. M., et al. (2008). Disparities in diagnosis and access to health services for children with autism: Data from the National Survey of Children’s Health. Journal of Developmental and Behavioral Pediatrics, 29(3), 152–160.CrossRefPubMedGoogle Scholar
  42. Liu, K. Y., King, M., & Bearman, P. S. (2010). Social influence and the autism epidemic. American Journal of Sociology, 115(5), 1387–1434.CrossRefGoogle Scholar
  43. London, E., & Etzel, R. A. (2000). The environment as an etiologic factor in autism: A new direction for research. Environmental Health Perspectives, 108(Suppl 3), 401–404.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Mandell, D. S., Novak, M. M., & Zubritsky, C. D. (2005). Factors associated with age of diagnosis among children with autism spectrum disorders. Pediatrics, 116(6), 1480–1486.CrossRefPubMedCentralPubMedGoogle Scholar
  45. Mandell, D. S., Wiggins, L. D., Carpenter, L. A., Daniels, J., DiGuiseppi, C., Durkin, M. S., et al. (2009). Racial/ethnic disparities in the identification of children with autism spectrum disorders. American Journal of Public Health, 99(3), 493–498.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Mason, S. M., Messer, L. C., Laraia, B. A., & Mendola, P. (2009). Segregation and preterm birth: The effects of neighborhood racial composition in North Carolina. Health & Place, 15(1), 1–9.CrossRefGoogle Scholar
  47. Mazumdar, S., King, M., Zerubavel, N., & Bearman, P. S. (2010). The spatial structure of autism in California, 1993–2001. Health & Place, 16(3), 539–546.CrossRefGoogle Scholar
  48. Mazumdar, S., Winter, A., Liu, K., & Bearman, P. (2012). Spatial clusters of autism births and diagnoses point to contextual drivers of increased prevalence. Social Science & Medicine. doi: 10.1016/j.socscimed.2012.11.032.
  49. Newschaffer, C. J., Croen, L. A., Daniels, J., Giarelli, E., Grether, J. K., Levy, S. E., et al. (2007). The epidemiology of autism spectrum disorders. Annual Review of Public Health, 28, 235–258.CrossRefPubMedGoogle Scholar
  50. Osypuk, T. L., & Acevedo-Garcia, D. (2008). Are racial Disparities in preterm birth larger in hypersegregated areas? American Journal of Epidemiology, 167(11), 1295–1304.CrossRefPubMedGoogle Scholar
  51. Pedersen, A., Pettygrove, S., Meaney, F. J., Mancilla, K., Gotschall, K., Kessler, D. B., et al. (2012). Prevalence of autism spectrum disorders in Hispanic and non-Hispanic white children. Pediatrics, 129(3), e629–e635.CrossRefPubMedGoogle Scholar
  52. Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neurosciences, 29(7), 349–358.CrossRefPubMedGoogle Scholar
  53. Pinborough-Zimmerman, J., Bakian, A. V., Fombonne, E., Bilder, D., Taylor, J., & McMahon, W. M. (2012). Changes in the administrative prevalence of autism spectrum disorders: Contribution of special education and health from 2002-2008. Journal of Autism and Developmental Disabilities, 42(4), 521–530.CrossRefGoogle Scholar
  54. Pinborough-Zimmerman, J., Bilder, D., Bakian, A., Satterfield, R., Carbone, P. S., Nangle, B. E., et al. (2011). Sociodemographic risk factors associated with Autism Spectrum Disorders and Intellectual Disability. Autism Research, 4(6), 1–11.CrossRefGoogle Scholar
  55. R Development Core Team. (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Downloaded from http://www.R-project.org.
  56. Rai, D., Lewis, G., Lundberg, M., Araya, R., Svensson, A., Dalman, C., et al. (2012). Parental socioeconomic status and risk of offspring autism spectrum disorders in a Swedish population-based study. Journal of the American Academy of Child and Adolescent Psychiatry, 51(5), 467–476.CrossRefPubMedGoogle Scholar
  57. Ritvo, E. R., Breeman, B. J., Pingree, C., Mason-Brothers, A., Jorde, L., Jenson, W. R., et al. (1989). The UCLA-University of Utah epidemiologic survey of autism: Prevalence. American Journal of Psychiatry, 146(2), 194–199.Google Scholar
  58. Roberts, E. M., Gross, R., Weiser, M., Bresnahan, M., Silverman, J., & Wolff, C. (2007). Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environmental Health Perspectives, 115(1), 1482–1489.PubMedCentralPubMedGoogle Scholar
  59. Rushton, G., & Lolonis, P. (1996). Exploratory spatial analysis of birth defect rates in an urban population. Statistics in Medicine, 15(7–9), 717–726.CrossRefPubMedGoogle Scholar
  60. SAS Institute. (2008). SAS version 9.2 Cary, North Carolina, USA: SAS Institute.Google Scholar
  61. Scott, D. J., & Terrell, G. R. (1986). Biased and unbiased cross-validation in density estimation. Technical Report # 23, Department of Statistics, Stanford University, CA.Google Scholar
  62. Shattuck, P. T., Durkin, M., Maenner, M., Newschaffer, C., Mandell, D. S., Wiggins, L., et al. (2009). Timing of identification among children with an autism spectrum disorder: Findings from a population-based surveillance study. Journal of the American Academy of Child and Adolescent Psychiatry, 48(5), 474–483.CrossRefPubMedCentralPubMedGoogle Scholar
  63. Silverman, B. W. (1986). Density estimation for statistics and data analysis. London, UK: Chapman and Hall.CrossRefGoogle Scholar
  64. Strömland, K., Nordin, V., Miller, M., Akerström, B., & Gillberg, C. (1994). Autism in thalidomide embryopathy: A population study. Developmental Medicine and Child Neurology, 36(4), 351–356.CrossRefPubMedGoogle Scholar
  65. Sutcliffe, J. S. (2008). Insights into the pathogenesis of autism. Science, 321(5886), 208–209.CrossRefPubMedGoogle Scholar
  66. Treffert, D. A. (1970). Epidemiology of infantile autism. Archives of General Psychiatry, 22(5), 431–438.CrossRefPubMedGoogle Scholar
  67. Van Meter, K. C., Christiansen, L. E., Delwiche, L. D., Azari, R., Carpenter, T. E., & Hertz-Picciotto, I. (2010). Geographic distribution of autism in California: A retrospective birth cohort analysis. Autism Research, 3(1), 19–29.PubMedCentralPubMedGoogle Scholar
  68. Volk, H. E., Lurmann, F., Penfold, B., Hertz-Picciotto, I., & McConnell, R. (2013). Traffic-related air pollution, particulate matter, and autism. Archives of General Psychiatry, 70(1), 71–77.Google Scholar
  69. Waller, L. A., & Gotway, C. A. (2004). Applied spatial statistics for public health data. New York: Wiley.CrossRefGoogle Scholar
  70. Walton, E. (2009). Residential segregation and birth weight among racial and ethnic minorities in the United States. Journal of Health and Social Behavior, 50(4), 427–442.CrossRefPubMedGoogle Scholar
  71. Webster, T., Vieira, V., Weinberg, J., & Aschengrau, A. (2006). Method for mapping population-based case-control studies: An application using generalized additive models. International Journal of Health Geography, 5, 26. doi: 10.1186/1476-072X-5-26.
  72. Windham, G. C., Anderson, M. C., Croen, L. A., Smith, K. S., Collins, J., & Grether, J. K. (2011). Birth prevalence of autism spectrum disorders in the San Francisco Bay area by demographic and ascertainment source characteristics. Journal of Autism and Developmental Disabilities, 41(10), 1362–1372.CrossRefGoogle Scholar
  73. Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco bay area. Environmental Health Perspectives, 114(9), 1438–1444.CrossRefPubMedCentralPubMedGoogle Scholar
  74. Zerbo, O., Iosif, A., Walker, C., Ozonoff, S., Hansen, R. L., & Hertz-Picciotto, I. (2013). Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (Childhood Autism Risks from Genetics and Environment) Study. Journal of Autism and Developmental Disorders, 43, 25–33.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Amanda V. Bakian
    • 1
  • Deborah A. Bilder
    • 1
  • Hilary Coon
    • 1
  • William M. McMahon
    • 1
  1. 1.Department of PsychiatryUniversity of UtahSalt Lake CityUSA

Personalised recommendations