Advertisement

Journal of Autism and Developmental Disorders

, Volume 43, Issue 5, pp 1038–1049 | Cite as

Social Robots as Embedded Reinforcers of Social Behavior in Children with Autism

  • Elizabeth S. Kim
  • Lauren D. Berkovits
  • Emily P. Bernier
  • Dan Leyzberg
  • Frederick Shic
  • Rhea Paul
  • Brian Scassellati
Original Paper

Abstract

In this study we examined the social behaviors of 4- to 12-year-old children with autism spectrum disorders (ASD; N = 24) during three tradic interactions with an adult confederate and an interaction partner, where the interaction partner varied randomly among (1) another adult human, (2) a touchscreen computer game, and (3) a social dinosaur robot. Children spoke more in general, and directed more speech to the adult confederate, when the interaction partner was a robot, as compared to a human or computer game interaction partner. Children spoke as much to the robot as to the adult interaction partner. This study provides the largest demonstration of social human-robot interaction in children with autism to date. Our findings suggest that social robots may be developed into useful tools for social skills and communication therapies, specifically by embedding social interaction into intrinsic reinforcers and motivators.

Keywords

Social robots Assistive robots Intervention Embedded reinforcers 

Notes

Acknowledgments

This material is based upon work supported by Microsoft Research and the National Science Foundation under grants No. 0835767, No. 0968538, and No. 1117801, as well as by an NSF Expedition in Computing (award #1139078). We thank Kathleen Koenig for clinical insights into experimental design; Taylor Mae Brown and Hilary Rose Barr for meticulous video annotation; Julie Wolf, Elizabeth Schoen Simmons, and Maysa Akbar for clinical supervision of participants; Rebecca Loomis and Jonathan Tirrell for assistance with data management; Erin MacDonnell and Heidi Seib for assistance with recruitment; and Jonathan A. Kelley for insightful review of this manuscript.

References

  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Arlington, VA: American Psychiatric Association.Google Scholar
  2. Bosseler, A., & Massaro, D. W. (2003). Development and evaluation of a computer-animated tutor for vocabulary and language learning in children with autism. Journal of Autism and Developmental Disorders, 33(6), 653–672. doi: 10.1023/B:JADD.0000006002.82367.4f.PubMedCrossRefGoogle Scholar
  3. Carter, A. S., Davis, N. O., Klin, A., & Volkmar, F. R. (2005). Social development in autism. In F. R. Volkmar, R. Paul, A. Klin, & D. J. Cohen (Eds.), Handbook of autism and pervasive developmental disorders (3rd ed., Vol. 1, pp. 312–334). Hoboken, NJ: John Wiley and Sons.Google Scholar
  4. Dautenhahn, K., & Werry, I. (2004). Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmatics and Cognition, 12(1), 1–35. doi: 10.1075/pc.12.1.03dau.CrossRefGoogle Scholar
  5. Dediu, H. (2011, 2008). Nearly 75% of iPhones are in use outside the US | asymco. Retrieved from http://www.asymco.com/2011/01/08/nearly-75-of-iphones-are-in-use-outside-the-us/.
  6. Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders, 6(1), 249–262. doi: 10.1016/j.rasd.2011.05.006.PubMedCrossRefGoogle Scholar
  7. Duquette, A., Michaud, F., & Mercier, H. (2008). Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Autonomous Robots, 24(2), 147–157. doi: 10.1007/s10514-007-9056-5.CrossRefGoogle Scholar
  8. Elliott, C. D. (2007). Differential ability scales-II (DAS-II). San Antonio, TX: Pearson. Retrieved from http://www.pearsonassessments.com/HAIWEB/Cultures/en-us/Productdetail.htm?Pid=015-8338-820.
  9. Feil-Seifer, D., & Matarić, M. J. (2009). Toward socially assistive robotics for augmenting interventions for children with autism spectrum disorders. In O. Khatib, V. Kumar, & G. J. Pappas (Eds.), Experimental robotics (Vol. 54, pp. 201–210). Berlin, Heidelberg: Springer. Retrieved from http://www.springerlink.com/content/l2k004r536p73nl6/.
  10. Hetzroni, O., & Tannous, J. (2004). Effects of a computer-based intervention program on the communicative functions of children with autism. Journal of Autism and Developmental Disorders, 34(2), 95–113. doi: 10.1023/B:JADD.0000022602.40506.bf.PubMedCrossRefGoogle Scholar
  11. Innvo Labs. (2012). PLEOworld. Retrieved February 22, 2012. From http://www.pleoworld.com/pleo_rb/eng/index.php.
  12. Joseph, R. M., & Tager-Flusberg, H. (1997). An investigation of attention and affect in children with autism and down syndrome. Journal of Autism and Developmental Disorders, 27(4), 385–396. doi: 10.1023/A:1025853321118.PubMedCrossRefGoogle Scholar
  13. Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: A field trial. Human-Computer Interaction, 19(1), 61–84. doi: 10.1207/s15327051hci1901&2_4.CrossRefGoogle Scholar
  14. Kanner, L. (1943). Autistic disturbances of affective content. Nervous Child, 2, 217–250.Google Scholar
  15. Kim, E. S., Leyzberg, D., Tsui, K. M., & Scassellati, B. (2009). How people talk when teaching a robot. Proceedings of the 4th ACM/IEEE international conference on human robot interaction, HRI’09 (pp. 23–30). New York, NY: ACM. doi:10.1145/1514095.1514102.
  16. Klin, A., Lang, J., Cicchetti, D. V., & Volkmar, F. R. (2000). Brief report: Interrater reliability of clinical diagnosis and DSM-IV criteria for autistic disorder: Results of the DSM-IV autism field trial. Journal of Autism and Developmental Disorders, 30(2), 163–167. doi: 10.1023/A:1005415823867.PubMedCrossRefGoogle Scholar
  17. Koegel, R. L., Dyer, K., & Bell, L. K. (1987a). The influence of child-preferred activities on autistic children’s social behavior. Journal of Applied Behavior Analysis, 20(3), 243–252. doi: 10.1901/jaba.1987.20-243.PubMedCrossRefGoogle Scholar
  18. Koegel, L. K., Koegel, R. L., Harrower, J. K., & Carter, C. M. (1999). Pivotal response intervention I: Overview of approach. Research and Practice for Persons with Severe Disabilities, 24(3), 174–185. doi: 10.2511/rpsd.24.3.174.CrossRefGoogle Scholar
  19. Koegel, R. L., O’Dell, M. C., & Koegel, L. K. (1987b). A natural language teaching paradigm for nonverbal autistic children. Journal of Autism and Developmental Disorders, 17(2), 187–200. doi: 10.1007/BF01495055.PubMedCrossRefGoogle Scholar
  20. Koegel, R. L., Vernon, T. W., & Koegel, L. K. (2009). Improving social initiations in young children with autism using reinforcers with embedded social interactions. Journal of Autism and Developmental Disorders, 39(9), 1240–1251. doi: 10.1007/s10803-009-0732-5.Google Scholar
  21. Kozima, H., Michalowski, M. P., & Nakagawa, C. (2009). Keepon: A playful robot for research, therapy, and entertainment. International Journal of Social Robotics, 1(1), 3–18. doi: 10.1007/s12369-008-0009-8.CrossRefGoogle Scholar
  22. Kozima, H., Nakagawa, C., & Yasuda, Y. (2005). Interactive robots for communication-care: A case-study in autism therapy. IEEE International workshop on robot and human interactive communication, 2005. ROMAN 2005 (pp. 341–346). Presented at the IEEE international workshop on robot and human interactive communication, 2005. ROMAN 2005, IEEE. doi:10.1109/ROMAN.2005.1513802.
  23. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., Pickles, A., et al. (2000). The autism diagnostic observation schedule—generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. doi: 10.1023/A:1005592401947.Google Scholar
  24. Maione, L., & Mirenda, P. (2006). Effects of video modeling and video feedback on peer-directed social language skills of a child with autism. Journal of Positive Behavior Interventions, 8(2), 106–118. doi: 10.1177/10983007060080020201.CrossRefGoogle Scholar
  25. Martin, F., & Farnum, J. (2002). Animal-assisted therapy for children with pervasive developmental disorders. Western Journal of Nursing Research, 24(6), 657–670. doi: 10.1177/019394502320555403.PubMedCrossRefGoogle Scholar
  26. Mesibov, G. B. (1992). Treatment issues with high-functioning adolescents and adults with autism. In E. Schopler & G. B. Mesibov (Eds.), High-functioning individuals with autism, current issues in autism (pp. 143–156). New York: Springer.Google Scholar
  27. Mullen, E. M. (1995). Mullen scales of early learning (AGS.). San Antonio, TX: Pearson.Google Scholar
  28. Mundy, P., Sigman, M. D., & Dawson, G. (1989). Specifying the nature of the social impairment in autism. Autism: New perspectives on nature, diagnosis, and treatment (pp. 3–21).Google Scholar
  29. Mundy, P., Sigman, M., Ungerer, J., & Sherman, T. (1986). Defining the social deficits of autism: The contribution of non-verbal communication measures. Journal of Child Psychology and Psychiatry, 27(5), 657–669. doi: 10.1111/j.1469-7610.1986.tb00190.x.PubMedCrossRefGoogle Scholar
  30. Parsons, S., & Mitchell, P. (2002). The potential of virtual reality in social skills training for people with autistic spectrum disorders. Journal of Intellectual Disability Research, 46(5), 430–443. doi: 10.1046/j.1365-2788.2002.00425.x.PubMedCrossRefGoogle Scholar
  31. Paul, R. (2008). Interventions to improve communication in autism. Child and Adolescent Psychiatric Clinics of North America, 17(4), 835–856.PubMedCrossRefGoogle Scholar
  32. Redefer, L., & Goodman, J. (1989). Brief report: Pet-facilitated therapy with autistic children. Journal of Autism and Developmental Disorders, 19(3), 461–467. doi: 10.1007/BF02212943.PubMedCrossRefGoogle Scholar
  33. Robins, B., Dautenhahn, K., & Dubowski, J. (2006). Does appearance matter in the interaction of children with autism with a humanoid robot? Interaction Studies, 7(3), 509–542.CrossRefGoogle Scholar
  34. Robins, B., Dautenhahn, K., te Boekhorst, R., & Billard, A. (2005). Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society, 4(2), 105–120. doi: 10.1007/s10209-005-0116-3.CrossRefGoogle Scholar
  35. Scassellati, B. (1996). Mechanisms of shared attention for a humanoid robot. Embodied Cognition and Action: Papers from the 1996 AAAI Fall Symposium (Vol. 4, p. 21).Google Scholar
  36. Scassellati, B. (2005). Quantitative metrics of social response for autism diagnosis. IEEE international workshop on robot and human interactive communication, ROMAN 2005 (pp. 585–590). doi:10.1109/ROMAN.2005.1513843.
  37. Scassellati, B., Admoni, H., & Matarić, M. J. (2012). Robots for use in autism research. Annual Review of Biomedical Engineering, 14, 275294.CrossRefGoogle Scholar
  38. Sigman, M., & Mundy, P. (1989). Social attachments in autistic children. Journal of the American Academy of Child and Adolescent Psychiatry, 28(1), 74–81.PubMedCrossRefGoogle Scholar
  39. Sparrow, S. S., Cicchetti, D. V., & Balla, D. A. (2005). Vineland adaptive behavior scales (Vineland-II) (2nd ed.). San Antonio, TX: Pearson. Retrieved from http://psychcorp.pearsonassessments.com/HAIWEB/Cultures/en-us/Productdetail.htm?Pid=Vineland-II.
  40. Stanton, C. M., Kahn Jr., P. H., Severson, R. L., Ruckert, J. H., & Gill, B. T. (2008). Robotic animals might aid in the social development of children with autism (p. 271). ACM Press. doi:10.1145/1349822.1349858.
  41. Steinfeld, A., Jenkins, O. C., & Scassellati, B. (2009). The oz of wizard: Simulating the human for interaction research. Proceedings of the 4th ACM/IEEE international conference on Human robot interaction, HRI’09 (pp. 101–108). San Diego, CA: ACM. doi:10.1145/1514095.1514115.
  42. Strickland, D. (1997). Virtual reality for the treatment of autism. In G. Riva (Ed.), Virtual reality in neuro-psycho-physiology: Cognitive, clinical and methodological issues in assessment and rehabilitation (pp. 81–86). Amsterdam: IOS Press.Google Scholar
  43. Tager-Flusberg, H., Paul, R., & Lord, C. (2005). Language and communication. In F. R. Volkmar, R. Paul, A. Klin, & D. J. Cohen (Eds.), Handbook of autism and pervasive developmental disorders (3rd ed., Vol. 1, pp. 335–364). Hoboken, NJ: John Wiley and Sons.Google Scholar
  44. Tapus, A., Matarić, M. J., & Scassellati, B. (2007). Socially assistive robotics (Grand challenges of robotics). Robotics Automation Magazine, IEEE, 14(1), 35–42. doi: 10.1109/MRA.2007.339605.CrossRefGoogle Scholar
  45. Volkmar, F. R., & Klin, A. (2005). Issues in the classification of autism and related conditions. In F. R. Volkmar, R. Paul, A. Klin, & D. J. Cohen (Eds.), Handbook of autism and pervasive developmental disorders (3rd ed., Vol. 1, pp. 335–364). Hoboken, NJ: John Wiley and Sons.Google Scholar
  46. Volkmar, F. R., Lord, C., Bailey, A., Schultz, R. T., & Klin, A. (2004). Autism and pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 45(1), 135–170. doi: 10.1046/j.0021-9630.2003.00317.x.PubMedCrossRefGoogle Scholar
  47. Werry, I., & Dautenhahn, K. (1999). Applying mobile robot technology to the rehabilitation of autistic children. Proceedings of the 7th symposium on intelligent robotic systems (SIRS99).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elizabeth S. Kim
    • 1
    • 2
  • Lauren D. Berkovits
    • 3
    • 4
  • Emily P. Bernier
    • 1
    • 5
  • Dan Leyzberg
    • 1
  • Frederick Shic
    • 3
  • Rhea Paul
    • 3
    • 6
  • Brian Scassellati
    • 1
  1. 1.Department of Computer ScienceYale UniversityNew HavenUSA
  2. 2.Child Study Center, School of MedicineYale UniversityNew HavenUSA
  3. 3.Child Study Center, School of MedicineYale UniversityNew HavenUSA
  4. 4.Department of PsychologyUCLALos AngelesUSA
  5. 5.Department of PsychologyHarvard UniversityCambridgeUSA
  6. 6.Speech-Language PathologySacred Heart UniversityFairfieldUSA

Personalised recommendations