Journal of Autism and Developmental Disorders

, Volume 42, Issue 2, pp 257–265 | Cite as

Verification of Parent-Report of Child Autism Spectrum Disorder Diagnosis to a Web-Based Autism Registry

  • Amy M. Daniels
  • Rebecca E. Rosenberg
  • Connie Anderson
  • J. Kiely Law
  • Alison R. Marvin
  • Paul A. Law
Original Paper


Growing interest in autism spectrum disorder (ASD) research requires increasingly large samples to uncover epidemiologic trends; such a large dataset is available in a national, web-based autism registry, the Interactive Autism Network (IAN). The objective of this study was to verify parent-report of professional ASD diagnosis to the registry’s database via a medical record review on a sample of IAN Research participants. Sixty-one percent of families agreed to participate; 98% (n = 116) of whom provided documentation verifying a professionally diagnosed ASD. Results of this study suggest that information collected from parents participating in IAN Research is valid, participants can be authenticated, and that scientists can both confidently use IAN data and recruit participants for autism research.


Autism spectrum disorders Web-based research Parent-report Community Diagnosis 



This study was supported by Autism Speaks. The funder had no role in determining content. We are grateful to Eleeshabah Yahudah for her role in study recruitment and communication with families. We gratefully acknowledge the contributions of IAN families without which this research would not be possible.


  1. Andrews, D., Nonnecke, B., & Preece, J. (2003). Electronic survey methodology: A case study in reaching hard to involve Internet users. International Journal of Human-Computer Interaction, 16(2), 185–210.CrossRefGoogle Scholar
  2. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal Investigators, & Centers for Disease Control and Prevention (CDC). (2009). Prevalence of autism spectrum disorders - autism and developmental disabilities monitoring network, United States, 2006. MMWR. Surveillance Summaries: Morbidity and Mortality Weekly Report. Surveillance Summaries/CDC, 58(10), 1–20.Google Scholar
  3. Berument, S. K., Rutter, M., Lord, C., Pickles, A., & Bailey, A. (1999). Autism screening questionnaire: Diagnostic validity. British Journal of Psychiatry, 175, 444–451.PubMedCrossRefGoogle Scholar
  4. Chandler, S., Charman, T., Baird, G., Simonoff, E., Loucas, T., Meldrum, D., et al. (2007). Validation of the Social Communication Questionnaire in a population cohort of children with autism spectrum disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 46(10), 1324–1332.PubMedCrossRefGoogle Scholar
  5. Charman, T., Baird, G., Simonoff, E., Loucas, T., Chandler, S., Meldrum, D., et al. (2007). Efficacy of three screening instruments in the identification of autistic-spectrum disorders. The British Journal of Psychiatry, 191, 554–559.PubMedCrossRefGoogle Scholar
  6. Constantino, J. N., Davis, S. A., Todd, R. D., Schindler, M. K. G. M. M., Brophy, S. L., Metzger, L. M., et al. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33(4), 427–433.Google Scholar
  7. Constantino, J. N., & Gruber, C. P. (2005). Social responsiveness scale (SRS). Western Psychological Services.Google Scholar
  8. Eaves, L. C., Wingert, H. D., Ho, H. H., & Mickelson, E. C. R. (2006). Screening for autism spectrum disorders with the Social Communication Questionnaire. Developmental and Behavioral Pediatrics, 27(2), S94–S103.CrossRefGoogle Scholar
  9. Epstein, J., & Klinkenberg, W. D. (2002). Collecting data via the Internet: the developmental and deployment of web-based survey. Journal of Technology in Human Services, 19(2–3), 33–47.CrossRefGoogle Scholar
  10. Estes, A., Munson, J., Dawson, G., Koehler, E., Zhou, X., & Abbott, R. (2009). Parenting stress and psychological functioning among mothers of preschool children. Autism, 13, 375–387.PubMedCrossRefGoogle Scholar
  11. Evans, J. R., & Mathur, A. (2005). The value of online surveys. Internet Research, 15(2), 195–219.CrossRefGoogle Scholar
  12. Fombonne, E. (2009). Epidemiology of pervasive developmental disorders. Pediatric Research, 65(6), 591–598.PubMedCrossRefGoogle Scholar
  13. Fricker, R. D., & Schonlau, M. (2002). Advantages and disadvantages of internet research surveys: Evidence from the literature. Field Methods, 14, 347.CrossRefGoogle Scholar
  14. Gosling, S. D., Vazire, S., Srivastava, S., & John, O. P. (2004). Should we trust web based studies? A comparative analysis of six preconceptions about internet questionnaires. American Psychologist, 59(2), 93–104.PubMedCrossRefGoogle Scholar
  15. Huang, H. (2006). Do print and web surveys provide the same results? Computers in Human Behavior?, 22, 334–350.CrossRefGoogle Scholar
  16. Interactive Autism Network. (2009). Retrieved March 10, 2010, from
  17. Johnson, C. P., Myers, S. M., & the Council on Children With Disabilities. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120(5), 1183–1215.PubMedCrossRefGoogle Scholar
  18. Kogan, M. D., Blumberg, S. J., Schieve, L. A., Boyle, C. A., Perrin, J. A., Ghandour, R. M., et al. (2007). Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics, 124(4), 1–9.CrossRefGoogle Scholar
  19. Lee, H., Marvin, A. R., Watson, T., Piggot, J., Law, J. K., Law, P. A., Constantino, J. N., Nelson, S. F. (2010). Accuracy of phenotyping of autistic children based on internet implemented parent report. American Journal of Medical Genetics. May 2010. [Epub ahead of print].Google Scholar
  20. Mandell, D. S.,Morales, K. H., Xie, M., Polsky, D., Stahmer, A., Marcus. S. C. (2010). County-level variation in the prevalence of medicaid-enrolled children with autism spectrum disorders. Journal of Autism and Developmental Disorders, Epub ahead of print.Google Scholar
  21. Morton, L. M., Cahill, J., & Hartge, P. (2006). Reporting participation in epidemiologic studies: A survey of practice. American Journal of Epidemiology, 163(3), 197–203.PubMedCrossRefGoogle Scholar
  22. Pottie, C. G., & Ingram, K. M. (2008). Daily stress, coping, and well-being in parents of children with autism: A multilevel modeling approach. Journal of Family Psychology, 22(6), 864–885.CrossRefGoogle Scholar
  23. Rosenberg, R. E., Daniels, A. M., Law, J. K., Law, P. A., & Kaufmann, W. E. (2009). Trends in autism spectrum disorder diagnoses: 1994–2007. Journal of Autism and Developmental Disorders, 39(8), 1099–1111.PubMedCrossRefGoogle Scholar
  24. Schieve, L. A., Blumberg, S. J., Rice, C., Visser, S. V., & Boyle, C. (2007). The relationship between autism and parenting stress. Pediatrics, 119, S114–S121.PubMedCrossRefGoogle Scholar
  25. Smith, B., Smith, T., Gray, C. G., & Ryan, M. A. K. (2007). When epidemiology meets the Internet: Web-based surveys in the millennium. Cohort study. Practice of Epidemiology, 166(11), 1345–1354.Google Scholar
  26. Spyridakis, J. H., Wei, C., Barrick, J., Cuddihy, E., & Maust, B. (2005). Internet-based research: Providing a foundation for web-design guidelines. Transactions on Professional Communication, 48(3), 242–260.CrossRefGoogle Scholar
  27. StataCorp. (2007). Stata Statistical Software (Release 9) [Computer software].College Station. College Station, TX: StataCorp LP.Google Scholar
  28. Umbach, P. D. (2004). Web based surveys: Best practices. New Directions for Institutional Research, 121, 23–38.CrossRefGoogle Scholar
  29. Wilson, A., & Laskey, N. (2003). Internet based marketing research: A serious alternative to traditional research methods? Marketing Intelligence & Planning, 21(2), 79–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Amy M. Daniels
    • 1
    • 2
  • Rebecca E. Rosenberg
    • 1
  • Connie Anderson
    • 1
  • J. Kiely Law
    • 1
    • 3
  • Alison R. Marvin
    • 1
  • Paul A. Law
    • 1
    • 3
  1. 1.Department of Medical InformaticsKennedy Krieger InstituteBaltimoreUSA
  2. 2.Department of Mental HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  3. 3.Department of PediatricsJohns Hopkins University School of Medicine, Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations