The Relationship Between Systemising and Mental Rotation and the Implications for the Extreme Male Brain Theory of Autism

  • Mark Brosnan
  • Rajiv Daggar
  • John Collomosse
Original Paper


Within the Extreme Male Brain theory, Autism Spectrum Disorder is characterised as a deficit in empathising in conjunction with preserved or enhanced systemising. A male advantage in systemising is argued to underpin the traditional male advantage in mental rotation tasks. Mental rotation tasks can be separated into rotational and non-rotational components, and circulating testosterone has been found to consistently relate to the latter component. Systemising was found to correlate with mental rotation, specifically the non-rotational component(s) of the mental rotation task but not the rotational component of the task. Systemising also correlated with a proxy for circulating testosterone but not a proxy for prenatal testosterone. A sex difference was identified in systemising and the non-rotational aspect of the mental rotation task.


Systemising Mental rotation EMB ASD 


  1. Alexander, G. M., & Son, T. (2007). Androgens and eye movements in women and men during a test of mental rotation ability. Hormones and Behavior, 52, 197–204.CrossRefPubMedGoogle Scholar
  2. Auyeung, B., Baron-Cohen, S., Chapman, E., Knickmeyer, R., Taylor, K., & Hackett, G. (2006). Foetal testosterone and the child systemizing quotient (SQ-C). European Journal of Endocrinology, 155, 123–130.CrossRefGoogle Scholar
  3. Axelsson, J., Ingre, M., Åkerstedt, T., & Holmbäck, U. (2008). Effects of acutely displaced Sleep on testosterone. The Journal of Clinical Endocrinology & Metabolism, 90, 4530–4535.CrossRefGoogle Scholar
  4. Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Science, 6, 248–254.CrossRefGoogle Scholar
  5. Baron-Cohen, S. (2003). The essential sex difference. London: Allen Lane.Google Scholar
  6. Baron-Cohen, S. (2006). Two new theories of autism: Hyper-systemising and assortative mating. Archives of Disease in Childhood, 91, 2–5.CrossRefPubMedGoogle Scholar
  7. Baron-Cohen, S. (2008). Autism, hypersystemizing, and truth. Quarterly Journal of Experimental Psychology, 61, 64–76.CrossRefGoogle Scholar
  8. Baron-Cohen, S., Knickmeyer, R. C., & Belmonte, M. K. (2005). Sex differences in the brain: Implications for explaining autism. Science, 310, 819–823.CrossRefPubMedGoogle Scholar
  9. Baron-Cohen, S., Wheelwright, S., Scahill, V., Lawson, J., & Spong, A. (2001). Are intuitive physics and intuitive psychology independent? A test with children with Asperger Syndrome. Journal of Developmental and Learning Disorders, 5, 47–78.Google Scholar
  10. Brosnan, M. (2006). Digit ratio and faculty membership: Implications for the relationship between prenatal testosterone and academic ability. British Journal of Psychology, 97, 455–466.CrossRefPubMedGoogle Scholar
  11. Brosnan, M., Walker, I. & Collomosse, J. (2009). The effect of explicitly varying the proportion of ‘Same’ and ‘Different’ responses on sex differences in the Shepard and Metzler mental rotation task. European Journal of Cognitive Psychology.Google Scholar
  12. Butler, T., Pan, H., Imperato-McGinley, J., Voyer, D., Cunningham-Bussel, A. C., Cordero, J. J., et al. (2007). A network approach to fMRI condition-dependent cognitive activation studies as applied to understanding sex differences. Clinical Neuroscience Research, 6, 391–398.CrossRefGoogle Scholar
  13. Cohen-Bendahan, C. C. C., van de Beek, C., & Berenbaum, S. A. (2005). Prenatal sex hormone effects on child and adult sex-typed behavior: Methods and findings. Neuroscience and Biobehavioral Reviews, 29, 353–384.CrossRefPubMedGoogle Scholar
  14. Collins, D. W., & Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 111, 845–849.CrossRefPubMedGoogle Scholar
  15. Dabbs, J. M. (1990). Salivary testosterone measurements: Reliability across hours, days and weeks. Physiology & Behavior, 48, 83–86.CrossRefGoogle Scholar
  16. Diver, M. J., Imtiaz, K. E., Ahmad, A. M., Vora, J. P., & Fraser, W. D. (2003). Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clinical Endocrinology, 58, 710–717.CrossRefPubMedGoogle Scholar
  17. Falter, C. M., Arroyo, M., & Davis, G. J. (2006). Testosterone: Activation or organization of spatial cognition? Biological Psychology, 73, 132–140.CrossRefPubMedGoogle Scholar
  18. Falter, C. M., Plaisted, K. C., & Davis, G. (2008a). Visuo-spatial processing in autism—Testing the predictions of extreme male brain theory. Journal of Autism and Developmental Disorders, 38, 507–515.CrossRefPubMedGoogle Scholar
  19. Falter, C. M., Plaisted, K. C., & Davis, G. (2008b). Male brains, androgen, and the cognitive profile in autism: Convergent evidence from 2D:4D and congenital adrenal hyperplasia. Journal of Autism and Developmental Disorders, 38, 997–998.CrossRefGoogle Scholar
  20. Gill, H. S., O’Boyle, M. W., & Hathaway, J. (1998). Cortical distribution of EEG activity for component processes during mental rotation. Cortex, 34, 707–718.CrossRefPubMedGoogle Scholar
  21. Grimshaw, G. M., Sitarenios, G., & Finegan, J. K. (1995). Mental rotation at 7 years: Relations with prenatal testosterone levels and spatial play experiences. Brain and Cognition, 29, 85–100.CrossRefPubMedGoogle Scholar
  22. Halari, R., Hines, M., Kumari, V., Mehrotra, R., Wheeler, M., Ng, V., et al. (2005). Sex differences and individual differences in cognitive performance and their relationship to endogenous gonadal hormones and gonadotropins. Behavioral Neuroscience, 119(1), 104–117.CrossRefPubMedGoogle Scholar
  23. Hines, M. (2004). Brain gender. Oxford: Oxford University Press.Google Scholar
  24. Hooven, C. K., Chabris, C. F., Ellison, P. T., & Kosslyn, S. M. (2004). The relationship of male testosterone to components of mental rotation. Neuropsychologia, 42, 782–790.CrossRefPubMedGoogle Scholar
  25. Hugdahl, K., Thomsen, T., & Ersland, L. (2006). Sex differences in visuo-spatial processing an fMRI study of mental rotation. Neuropsychologia, 44, 1575–1583.CrossRefPubMedGoogle Scholar
  26. Hulmi, J. J., Ahtiainen, J. P., Selanne, H., Volek, J. S., Hakkinen, K., Kovanen, V., et al. (2008). Androgen receptors and testosterone in men—Effects of protein ingestion, resistance exercise and fiber type. The Journal of Steroid Biochemistry and Molecular Biology, 110, 130–137.CrossRefPubMedGoogle Scholar
  27. Johnson, E. S., & Meade, A. C. (1987). Development patterns of spatial ability: An early sex difference. Child Development, 58, 725–740.CrossRefPubMedGoogle Scholar
  28. Jolicoeur, P., Regehr, S., Smith, L. B. J. P., & Smith, G. N. (1985). Mental rotation of representations of two-dimensional and three-dimensional objects. Canadian Journal of Psychology, 39, 100–129.Google Scholar
  29. Jordan, K., Wüstenberg, T., Heinze, H. J., Peters, M., & Jäncke, L. (2002). Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia, 40, 2397–2408.CrossRefPubMedGoogle Scholar
  30. Karadi, K., Kallai, J., & Kovacs, B. (2001). Cognitive subprocesses of mental rotation: Why is a good rotator better than a poor one? Perceptual Motor Skills, 93, 333–337.Google Scholar
  31. Kerkman, D. D., Wise, J. C., & Harwood, E. A. (2000). Impossible ‘mental rotation’ problems—A mismeasure of women’s spatial abilities? Learning and Individual Differences, 12, 253–269.CrossRefGoogle Scholar
  32. Knickmeyer, R. C., Baron-Cohen, S., Auyeung, B., & Ashwin, E. (2008). How to test the extreme male brain theory of autism in terms of foetal androgens? Journal of Autism and Developmental Disorders, 38, 995–996.CrossRefPubMedGoogle Scholar
  33. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.CrossRefPubMedGoogle Scholar
  34. Lutchmaya, S., Baron-Cohen, S., Raggatt, P., Knickmeyer, R., & Manning, J. T. (2004). 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Human Development, 77, 23–28.CrossRefPubMedGoogle Scholar
  35. Manning, J. T., Baron-Cohen, S., Wheelwright, S., & Sanders, G. (2001). The 2nd to 4th digit ratio and autism. Developmental Medicine and Child Neurology, 43, 160–164.CrossRefPubMedGoogle Scholar
  36. Manning, J. T., Bundred, P. E., Newton, D. J., & Flanagan, B. F. (2003). The second to fourth digit ratio and variation in the androgen receptor gene. Evolution and Human Behavior, 24, 399–405.CrossRefGoogle Scholar
  37. Manning, J. T., Fink, B., Neave, N., & Caswell, N. (2005). Photocopies yield lower digit ratios (2D:4D) than direct finger measurements. Archives of Sexual Behavior, 34, 329–333.CrossRefPubMedGoogle Scholar
  38. Manning, J. T., Scutt, D., Wilson, J., & Lewis-Jones, D. I. (1998). The ratio of 2nd to 4rth digit length: A predictor of sperm numbers, levels of testosterone, LH, oestrogen. Human Reproduction, 13, 3000–3004.CrossRefPubMedGoogle Scholar
  39. Matchock, R., Dorn, L., & Susman, E. (2007). Diurnal and seasonal cortisol, testosterone, and DHEA rhythms in boys and girls during puberty. Chronobiology International, 24, 969–990.CrossRefPubMedGoogle Scholar
  40. McIntyre, M. H. (2006). The use of digit ratio as markers for perinatal androgen action. Reproductive Biology and Endocrinology, 4(10). (February 26).Google Scholar
  41. Moffat, S. D., & Hampson, E. (1996). Salivary testosterone levels in left- and right-handed adults. Neuropsychologia, 34, 225–233.CrossRefPubMedGoogle Scholar
  42. Peters, M. (2005). Sex differences and the factor of time in solving Vanderberg and Kuse mental rotation problems. Brain and Cognition, 57, 176–184.CrossRefPubMedGoogle Scholar
  43. Peters, M., Manning, J. T., & Reimers, S. (2007). The effects of sex, sexual orientation, and digit ratio (2D:4D) on mental rotation performance. Archives of Sexual Behavior, 36, 251–260.CrossRefPubMedGoogle Scholar
  44. Phillips, R. (1979). Phillips S & M test. Windsor, Berks: NFER-NELSON.Google Scholar
  45. Sanders, G., Bereczkei, T., Csatho, A., & Manning, J. (2005). The ratio of the 2nd to 4th finger length predicts spatial ability in men but not women. Cortex, 41, 789–795.CrossRefPubMedGoogle Scholar
  46. Schoning, S., Engelien, A., Kugel, H., Schafer, S., Schiffbauer, H., Zwitserlood, P., et al. (2007). Functional anatomy of visuo-spatial working memory during mental rotation is influenced by sex, menstrual cycle, and sex steroid hormones. Neuropsychologia, 45, 3203–3214.CrossRefPubMedGoogle Scholar
  47. Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.Google Scholar
  48. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.CrossRefPubMedGoogle Scholar
  49. Silk, T. J., Rinehart, N., Bradshaw, J. L., Tonge, B., Egan, G., O’Boyle, M. W., et al. (2006). Visuospatial processing and the function of prefrontal-parietal networks in autism spectrum disorders: A functional MRI study. American Journal of Psychiatry, 163, 1440–1443.CrossRefPubMedGoogle Scholar
  50. Silverman, I., Philips, K., & Silverman, L. K. (1996). Homogeneity of effect sizes for sex across spatial tests and cultures: Implications for hormonal therapies. Brain and Cognition, 31, 90–94.CrossRefPubMedGoogle Scholar
  51. Solomon, M., Ozonoff, S. J., Cummings, N., & Carter, C. S. (2008). Cognitive control in autism spectrum disorders. International Journal of Developmental Neuroscience, 26, 239–247.CrossRefPubMedGoogle Scholar
  52. Thomsen, T., Hugdahl, K., Ersland, L., Barndon, R., Lundervold, A., Smievoll, A. I., et al. (2000). Functional magnetic resonance imaging (fMRI) study of sex differences in a mental rotation task. Medical Science Monitor, 6, 1186–1196.PubMedGoogle Scholar
  53. Valdez, P., Reilly, T., & Waterhouse, J. (2008). Rhythms of mental performance. Mind, Brain, and Education, 2, 7–16.CrossRefGoogle Scholar
  54. von Horn, A., Bäckman, L., Davidsson, T. & Hansen, S. (2009). Empathizing, systemizing and finger length ratio in a Swedish sample. Scandinavian Journal of Psychology.Google Scholar
  55. Voracek, M., & Dressler, S. G. (2006). Lack of correlation between digit ratio (2D:4D) and Baron-Cohen’s ‘‘Reading the Mind in the Eyes’’ test, empathy, systemising, and autism-spectrum quotients in a general population sample. Personality and Individual Differences, 41, 1481–1491.CrossRefGoogle Scholar
  56. Voyer, D., Butler, T., Cordero, J., Brake, B., Silbersweig, D., Stern, E., et al. (2006). The Relation between computerized and paper-and-pencil mental rotation tasks: A validation study. Journal of Clinical and Experimental Neuropsychology, 28, 928–939.CrossRefPubMedGoogle Scholar
  57. Voyer, D., & Hou, J. (2006). Type of items and the magnitude of gender differences on the mental rotations test. Canadian Journal of Experimental Psychology, 60, 91–100.PubMedGoogle Scholar
  58. Voyer, D., Voyer, S., & Bryden, M. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 2, 250–270.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of BathBathUK
  2. 2.Department of Computer ScienceUniversity of BathBathUK

Personalised recommendations