Journal of Autism and Developmental Disorders

, Volume 39, Issue 2, pp 260–268 | Cite as

Pleiotropic Effects of Neurotransmission during Development: Modulators of Modularity

Original Paper


The formation and function of the mammalian cerebral cortex relies on the complex interplay of a variety of genetic and environmental factors through protracted periods of gestational and postnatal development. Biogenic amine systems are important neuromodulators, both in the adult nervous system, and during critical epochs of brain development. Abnormalities in developmental programming likely contribute to developmental delays and multiple neurological and psychiatric disorders, often with symptom onset much later than the actual induction of pathology. We review several genetic and pharmacological models of dopamine, norepinephrine and serotonin modulation during development, each of which produces permanent changes in cerebral cortical structure and function. These models clearly illustrate the ability of these neurotransmitters to function beyond their classic roles and show their involvement in the development and modulation of fine brain circuitry that is sensitive to numerous effectors. Furthermore, these studies demonstrate the need to consider not only gene by environment interactions, but also gene by environment by developmental time interactions.


Dopamine Serotonin Cortex Cocaine Prenatal Postnatal 



Drs. Thompson and Stanwood currently receive support from NICHD core grant P30HD15052 (GDS), F32DA020981 (BLT) and the Vanderbilt Kennedy Center (GDS & BLT). We thank Dr. Pat Levitt for useful discussions, insightful comments, and partial financial support. We also thank Dr. Kathie Eagleson and Dr. Daniel Campbell for critical reading of this manuscript.


  1. Albert, P. R., & Lemonde, S. (2004). 5-HT1A receptors, gene repression, and depression: Guilt by association. The Neuroscientist, 10(6), 575–593. doi: 10.1177/1073858404267382.PubMedGoogle Scholar
  2. Andersen, S. L. (2005). Stimulants and the developing brain. Trends in Pharmacological Sciences, 26(5), 237–243. doi: 10.1016/ Scholar
  3. Andrade, S. E., Raebel, M. A., Brown, J., Lane, K., Livingston, J., Boudreau, D., et al. (2008). Use of antidepressant medications during pregnancy: A multisite study. American Journal of Obstetrics and Gynecology, 198(2), 194, e191–e195.Google Scholar
  4. Ansorge, M. S., Zhou, M., Lira, A., Hen, R., & Gingrich, J. A. (2004). Early-life blockade of the 5-ht transporter alters emotional behavior in adult mice. Science, 306(5697), 879–881. doi: 10.1126/science.1101678.PubMedGoogle Scholar
  5. Bairy, K. L., Madhyastha, S., Ashok, K. P., Bairy, I., & Malini, S. (2007). Developmental and behavioral consequences of prenatal fluoxetine. Pharmacology, 79(1), 1–11. doi: 10.1159/000096645.PubMedGoogle Scholar
  6. Bonnin, A., Peng, W., Hewlitt, W., & Levitt, P. (2006). Expression mapping of 5-ht1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience, 141(2), 781–794.Google Scholar
  7. Bonnin, A., Torii, M., Wang, L., Rakic, P., & Levitt, P. (2007). Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nature Neuroscience, 10(5), 588–597. doi: 10.1038/nn1896.PubMedGoogle Scholar
  8. Burgess, N. K., Sweeten, T. L., McMahon, W. M., & Fujinami, R. S. (2006). Hyperserotoninemia and altered immunity in autism. Journal of Autism and Developmental Disorders, 36(5), 697–704. doi: 10.1007/s10803-006-0100-7.PubMedGoogle Scholar
  9. Buznikov, G. A., Shmukler, Y. B., & Lauder, J. M. (1996). From oocyte to neuron: Do neurotransmitters function in the same way throughout development? Cellular and Molecular Neurobiology, 16(5), 537–559. doi: 10.1007/BF02152056.PubMedGoogle Scholar
  10. Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10(9), 1103–1109. doi: 10.1038/nn1964.PubMedGoogle Scholar
  11. Carroll, J. C., Boyce-Rustay, J. M., Millstein, R., Yang, R., Wiedholz, L. M., Murphy, D. L., et al. (2007). Effects of mild early life stress on abnormal emotion-related behaviors in 5-htt knockout mice. Behavior Genetics, 37(1), 214–222. doi: 10.1007/s10519-006-9129-9.PubMedGoogle Scholar
  12. Cases, O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C., & Gaspar, P. (1996). Lack of barrels in the somatosensory cortex of monoamine oxidase a-deficient mice: Role of a serotonin excess during the critical period. Neuron, 16(2), 297–307. doi: 10.1016/S0896-6273(00)80048-3.PubMedGoogle Scholar
  13. Charman, T. (1999). Autism and the pervasive developmental disorders. Current Opinion in Neurology, 12, 155–159. doi: 10.1097/00019052-199904000-00005.PubMedGoogle Scholar
  14. Cheslack-Postava, K., Fallin, M. D., Avramopoulos, D., Connors, S. L., Zimmerman, A. W., Eberhart, C. G., et al. (2007). Beta2-adrenergic receptor gene variants and risk for autism in the agre cohort. Molecular Psychiatry, 12(3), 283–291.PubMedGoogle Scholar
  15. Clancy, B., Kersh, B., Hyde, J., Darlington, R. B., Anand, K. J., & Finlay, B. L. (2007). Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics, 5(1), 79–94.PubMedGoogle Scholar
  16. Clark, L., Cools, R., & Robbins, T. W. (2004). The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain and Cognition, 55(1), 41–53. doi: 10.1016/S0278-2626(03)00284-7.PubMedGoogle Scholar
  17. Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavioral Reviews, 26(2), 105–125. doi: 10.1016/S0149-7634(01)00063-X.PubMedGoogle Scholar
  18. Connors, S. L., Crowell, D. E., Eberhart, C. G., Copeland, J., Newschaffer, C. J., Spence, S. J., et al. (2005). Beta2-adrenergic receptor activation and genetic polymorphisms in autism: Data from dizygotic twins. Journal of Child Neurology, 20(11), 876–884. doi: 10.1177/08830738050200110401.PubMedGoogle Scholar
  19. Cote, F., Fligny, C., Bayard, E., Launay, J. M., Gershon, M. D., Mallet, J., et al. (2007). Maternal serotonin is crucial for murine embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 329–334. doi: 10.1073/pnas.0606722104.PubMedGoogle Scholar
  20. Dannlowski, U., Ohrmann, P., Bauer, J., Deckert, J., Hohoff, C., Kugel, H., et al. (2008). 5-httlpr biases amygdala activity in response to masked facial expressions in major depression. Neuropsychopharmacology, 33(2), 418–424. doi: 10.1038/sj.npp.1301411.PubMedGoogle Scholar
  21. Degnan, K. A., & Fox, N. A. (2007). Behavioral inhibition and anxiety disorders: Multiple levels of a resilience process. Development and Psychopathology, 19(3), 729–746. doi: 10.1017/S0954579407000363.PubMedGoogle Scholar
  22. Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 3(1), 79–83. doi: 10.1016/0378-3782(79)90022-7.PubMedGoogle Scholar
  23. Dow-Edwards, D., Mayes, L., Spear, L., & Hurd, Y. (1999). Cocaine and development: Clinical, behavioral, and neurobiological perspectives—A symposium report. Neurotoxicology and Teratology, 21(5), 481–490. doi: 10.1016/S0892-0362(99)00008-2.PubMedGoogle Scholar
  24. Drew, M. R., Simpson, E. H., Kellendonk, C., Herzberg, W. G., Lipatova, O., Fairhurst, S., et al. (2007). Transient overexpression of striatal d2 receptors impairs operant motivation and interval timing. The Journal of Neuroscience, 27(29), 7731–7739. doi: 10.1523/JNEUROSCI.1736-07.2007.PubMedGoogle Scholar
  25. Elliott, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65, 49–59. doi: 10.1093/bmb/65.1.49.PubMedGoogle Scholar
  26. Elston, G. N. (2003). Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cerebral Cortex (New York, N.Y.: 1991), 13(11), 1124–1138. doi: 10.1093/cercor/bhg093.Google Scholar
  27. Evans, S. M., Cone, E. J., & Henningfield, J. E. (1996). Arterial and venous cocaine plasma concentrations in humans: Relationship to route of administration, cardiovascular effects and subjective effects. The Journal of Pharmacology and Experimental Therapeutics, 279(3), 1345–1356.PubMedGoogle Scholar
  28. Feenstra, M. G. (1992). Functional neuroteratology of drugs acting on adrenergic receptors. Neurotoxicology, 13(1), 55–63.PubMedGoogle Scholar
  29. Friedman, E., Yadin, E., & Wang, H. Y. (1996). Effect of prenatal cocaine on dopamine receptor-g protein coupling in mesocortical regions of the rabbit brain. Neuroscience, 70(3), 739–747. doi: 10.1016/S0306-4522(96)83011-9.PubMedGoogle Scholar
  30. Fukumoto, T., Kema, I. P., & Levin, M. (2005). Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Current Biology, 15(9), 794–803. doi: 10.1016/j.cub.2005.03.044.PubMedGoogle Scholar
  31. Gingras, J. L., & O’Donnell, K. J. (1998). State control in the substance-exposed fetus. I. The fetal neurobehavioral profile: An assessment of fetal state, arousal, and regulation competency. Annals of the New York Academy of Sciences, 846, 262–276. doi: 10.1111/j.1749-6632.1998.tb09743.x.PubMedGoogle Scholar
  32. Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1445–1453. doi: 10.1098/rstb.1996.0129.PubMedGoogle Scholar
  33. Goldman-Rakic, P. S., Lidow, M. S., & Gallager, D. W. (1990). Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. The Journal of Neuroscience, 10(7), 2125–2138.PubMedGoogle Scholar
  34. Gross, C., Zhuang, X., Stark, K., Ramboz, S., Oosting, R., Kirby, L., et al. (2002). Serotonin1a receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature, 416(6879), 396–400. doi: 10.1038/416396a.PubMedGoogle Scholar
  35. Hadders-Algra, M., Touwen, B. C., & Huisjes, H. J. (1986). Long-term follow-up of children prenatally exposed to ritodrine. British Journal of Obstetrics and Gynaecology, 93(2), 156–161.PubMedGoogle Scholar
  36. Harvey, J. A. (2004). Cocaine effects on the developing brain: Current status. Neuroscience and Biobehavioral Reviews, 27(8), 751–764. doi: 10.1016/j.neubiorev.2003.11.006.PubMedGoogle Scholar
  37. Hedlund, P. B., & Sutcliffe, J. G. (2004). Functional, molecular and pharmacological advances in 5-ht7 receptor research. Trends in Pharmacological Sciences, 25(9), 481–486. doi: 10.1016/ Scholar
  38. Hirshfeld, D. R., Rosenbaum, J. F., Biederman, J., Bolduc, E. A., Faraone, S. V., Snidman, N., et al. (1992). Stable behavioral inhibition and its association with anxiety disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 31(1), 103–111. doi: 10.1097/00004583-199201000-00016.PubMedGoogle Scholar
  39. Holmes, A., le Guisquet, A. M., Vogel, E., Millstein, R. A., Leman, S., & Belzung, C. (2005). Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neuroscience and Biobehavioral Reviews, 29(8), 1335–1346. doi: 10.1016/j.neubiorev.2005.04.012.PubMedGoogle Scholar
  40. Holmes, A., Lit, Q., Murphy, D. L., Gold, E., & Crawley, J. N. (2003). Abnormal anxiety-related behavior in serotonin transporter null mutant mice: The influence of genetic background. Genes Brain & Behavior, 2(6), 365–380. doi: 10.1046/j.1601-1848.2003.00050.x.Google Scholar
  41. Jenkins, A. J., Keenan, R. M., Henningfield, J. E., & Cone, E. J. (2002). Correlation between pharmacological effects and plasma cocaine concentrations after smoked administration. Journal of Analytical Toxicology, 26(7), 382–392.PubMedGoogle Scholar
  42. Jones, L., Fischer, I., & Levitt, P. (1996). Nonuniform alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure. Cerebral Cortex (New York, N.Y.: 1991), 6(3), 431–445. doi: 10.1093/cercor/6.3.431.Google Scholar
  43. Jones, L. B., Stanwood, G. D., Reinoso, B. S., Washington, R. A., Wang, H. Y., Friedman, E., et al. (2000). In utero cocaine-induced dysfunction of dopamine d1 receptor signaling and abnormal differentiation of cerebral cortical neurons. The Journal of Neuroscience, 20(12), 4606–4614.PubMedGoogle Scholar
  44. Kagan, J., & Snidman, N. (1999). Early childhood predictors of adult anxiety disorders. Biological Psychiatry, 46(11), 1536–1541. doi: 10.1016/S0006-3223(99)00137-7.PubMedGoogle Scholar
  45. Kagan, J., Snidman, N., Kahn, V., & Towsley, S. (2007). The preservation of two infant temperaments into adolescence. Monographs of the Society for Research in Child Development, 72(2), 1–75. doi: 10.1111/j.1540-5834.2007.00437.x.PubMedGoogle Scholar
  46. Karmel, B. Z., & Gardner, J. M. (1996). Prenatal cocaine exposure effects on arousal-modulated attention during the neonatal period. Developmental Psychobiology, 29(5), 463–480. doi:10.1002/(SICI)1098-2302(199607)29:5<463::AID-DEV5>3.0.CO;2-M.PubMedGoogle Scholar
  47. Kellendonk, C., Simpson, E. H., Polan, H. J., Malleret, G., Vronskaya, S., Winiger, V., et al. (2006). Transient and selective overexpression of dopamine d2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron, 49(4), 603–615. doi: 10.1016/j.neuron.2006.01.023.PubMedGoogle Scholar
  48. Kim, H., Lim, S. W., Kim, S., Kim, J. W., Chang, Y. H., Carroll, B. J., et al. (2006). Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression. Journal of the American Medical Association, 296(13), 1609–1618. doi: 10.1001/jama.296.13.1609.PubMedGoogle Scholar
  49. Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425. doi: 10.1162/0898929042304796.PubMedGoogle Scholar
  50. Lambe, E. K., Krimer, L. S., & Goldman-Rakic, P. S. (2000). Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. The Journal of Neuroscience, 20(23), 8780–8787.PubMedGoogle Scholar
  51. Lauder, J. M. (1983). Hormonal and humoral influences on brain development. Psychoneuroendocrinology, 8(2), 121–155. doi: 10.1016/0306-4530(83)90053-7.PubMedGoogle Scholar
  52. Leonardo, E. D., & Hen, R. (2006). Genetics of affective and anxiety disorders. Annual Review of Psychology, 57, 117–137. doi: 10.1146/annurev.psych.57.102904.190118.PubMedGoogle Scholar
  53. Levitt, P., Eagleson, K. L., & Powell, E. M. (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends in Neurosciences, 27(7), 400–406. doi: 10.1016/j.tins.2004.05.008.PubMedGoogle Scholar
  54. Lewis, D. A., & Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annual Review of Neuroscience, 25, 409–432. doi: 10.1146/annurev.neuro.25.112701.142754.PubMedGoogle Scholar
  55. Lidow, M. S. (2003). Consequences of prenatal cocaine exposure in nonhuman primates. Brain Research. Developmental Brain Research, 147(1–2), 23–36. doi: 10.1016/j.devbrainres.2003.09.001.PubMedGoogle Scholar
  56. Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biological Psychiatry, 44(3), 151–162. doi: 10.1016/S0006-3223(98)00139-5.PubMedGoogle Scholar
  57. Luo, X., Persico, A. M., & Lauder, J. M. (2003). Serotonergic regulation of somatosensory cortical development: Lessons from genetic mouse models. Developmental Neuroscience, 25(2–4), 173–183. doi: 10.1159/000072266.PubMedGoogle Scholar
  58. Maciag, D., Simpson, K. L., Coppinger, D., Lu, Y., Wang, Y., Lin, R. C., et al. (2006). Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology, 31(1), 47–57.PubMedGoogle Scholar
  59. Mann, J. J., Brent, D. A., & Arango, V. (2001). The neurobiology and genetics of suicide and attempted suicide: A focus on the serotonergic system. Neuropsychopharmacology, 24(5), 467–477. doi: 10.1016/S0893-133X(00)00228-1.PubMedGoogle Scholar
  60. Maschi, S., Clavenna, A., Campi, R., Schiavetti, B., Bernat, M., & Bonati, M. (2008). Neonatal outcome following pregnancy exposure to antidepressants: A prospective controlled cohort study. British Journal of Obstetrics and Gynaecology, 115(2), 283–289. doi: 10.1111/j.1471-0528.2007.01518.x.PubMedGoogle Scholar
  61. Mayes, L. C. (2002). A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicology and Teratology, 24(3), 385–395. doi: 10.1016/S0892-0362(02)00200-3.PubMedGoogle Scholar
  62. Mayes, L. C., Grillon, C., Granger, R., & Schottenfeld, R. (1998). Regulation of arousal and attention in preschool children exposed to cocaine prenatally. Annals of the New York Academy of Sciences, 846, 126–143. doi: 10.1111/j.1749-6632.1998.tb09731.x.PubMedGoogle Scholar
  63. Meneses, A. (1999). 5-ht system and cognition. Neuroscience and Biobehavioral Reviews, 23(8), 1111–1125. doi: 10.1016/S0149-7634(99)00067-6.PubMedGoogle Scholar
  64. Meyer, A., Seidler, F. J., Aldridge, J. E., & Slotkin, T. A. (2005). Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicology and Applied Pharmacology, 203(2), 154–166. doi: 10.1016/j.taap. 2004.08.005.PubMedGoogle Scholar
  65. Murphy, E. H., Fischer, I., Friedman, E., Grayson, D., Jones, L., Levitt, P., et al. (1997). Cocaine administration in pregnant rabbits alters cortical structure and function in their progeny in the absence of maternal seizures. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 114(3), 433–441. doi: 10.1007/PL00005652.PubMedGoogle Scholar
  66. Murphy, D. L., & Lesch, K. P. (2008). Targeting the murine serotonin transporter: Insights into human neurobiology. Nature Reviews Neuroscience, 9(2), 85–96. doi: 10.1038/nrn2284.PubMedGoogle Scholar
  67. Nakamura, K., Koyama, Y., Takahashi, K., Tsurui, H., Xiu, Y., Ohtsuji, M., et al. (2006). Requirement of tryptophan hydroxylase during development for maturation of sensorimotor gating. Journal of Molecular Biology, 363(2), 345–354. doi: 10.1016/j.jmb.2006.08.051.PubMedGoogle Scholar
  68. Oberlander, T. F., Bonaguro, R. J., Misri, S., Papsdorf, M., Ross, C. J., & Simpson, E. M. (2008). Infant serotonin transporter (slc6a4) promoter genotype is associated with adverse neonatal outcomes after prenatal exposure to serotonin reuptake inhibitor medications. Molecular Psychiatry, 13(1), 65–73. doi: 10.1038/ 4002007.PubMedGoogle Scholar
  69. Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., & Toth, M. (1998). Increased anxiety of mice lacking the serotonin1a receptor. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10734–10739. doi: 10.1073/pnas.95.18.10734.PubMedGoogle Scholar
  70. Parlaman, J. P., Thompson, B. L., Levitt, P., & Stanwood, G. D. (2007). Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. European Journal of Pharmacology, 563(1–3), 124–129. doi: 10.1016/j.ejphar.2007.02.035.PubMedGoogle Scholar
  71. Pearson, K. H., Nonacs, R. M., Viguera, A. C., Heller, V. L., Petrillo, L. F., Brandes, M., et al. (2007). Birth outcomes following prenatal exposure to antidepressants. The Journal of Clinical Psychiatry, 68(8), 1284–1289.PubMedCrossRefGoogle Scholar
  72. Persico, A. M., Di Pino, G., & Levitt, P. (2006). Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Research, 1095(1), 17–25. doi: 10.1016/j.brainres.2006.04.006.PubMedGoogle Scholar
  73. Pitzer, M., Schmidt, M. H., Esser, G., & Laucht, M. (2001). Child development after maternal tocolysis with beta-sympathomimetic drugs. Child Psychiatry and Human Development, 31(3), 165–182. doi: 10.1023/A:1026419720410.PubMedGoogle Scholar
  74. Popova, N. K. (2006). From genes to aggressive behavior: The role of serotonergic system. BioEssays, 28(5), 495–503. doi: 10.1002/bies.20412.PubMedGoogle Scholar
  75. Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., et al. (1998). Serotonin receptor 1a knockout: An animal model of anxiety-related disorder. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14476–14481. doi: 10.1073/pnas.95.24.14476.PubMedGoogle Scholar
  76. Ressler, K. J., & Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depression and Anxiety, 12(Suppl 1), 2–19. doi:10.1002/1520-6394(2000)12:1±<2::AID-DA2>3.0.CO;2-4.PubMedGoogle Scholar
  77. Rhodes, M. C., Seidler, F. J., Abdel-Rahman, A., Tate, C. A., Nyska, A., Rincavage, H. L., et al. (2004). Terbutaline is a developmental neurotoxicant: Effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. The Journal of Pharmacology and Experimental Therapeutics, 308(2), 529–537. doi: 10.1124/jpet.103.060095.PubMedGoogle Scholar
  78. Richardson, G. A., Conroy, M. L., & Day, N. L. (1996). Prenatal cocaine exposure: Effects on the development of school-age children. Neurotoxicology and Teratology, 18(6), 627–634. doi: 10.1016/S0892-0362(96)00121-3.PubMedGoogle Scholar
  79. Rodier, P. M. (1980). Chronology of neuron development: Animal studies and their clinical implications. Developmental Medicine and Child Neurology, 22(4), 525–545.PubMedGoogle Scholar
  80. Rodier, P. M. (1994). Vulnerable periods and processes during central nervous system development. Environmental Health Perspectives, 102(Suppl 2), 121–124. doi: 10.2307/3431828.PubMedGoogle Scholar
  81. Rodier, P. M. (1995). Developing brain as a target of toxicity. Environmental Health Perspectives, 103(Suppl 6), 73–76. doi: 10.2307/3432351.PubMedGoogle Scholar
  82. Rosenbaum, J. F., Biederman, J., Bolduc-Murphy, E. A., Faraone, S. V., Chaloff, J., Hirshfeld, D. R., et al. (1993). Behavioral inhibition in childhood: A risk factor for anxiety disorders. Harvard Review of Psychiatry, 1(1), 2–16. doi: 10.3109/10673229309017052.PubMedGoogle Scholar
  83. Schwartz, C. E., Snidman, N., & Kagan, J. (1999). Adolescent social anxiety as an outcome of inhibited temperament in childhood. Journal of the American Academy of Child and Adolescent Psychiatry, 38(8), 1008–1015.PubMedCrossRefGoogle Scholar
  84. Silverstone, T. (1992). Appetite suppressants. A review. Drugs, 43(6), 820–836. doi: 10.2165/00003495-199243060-00003.PubMedGoogle Scholar
  85. Simansky, K. J., & Kachelries, W. J. (1996). Prenatal exposure to cocaine selectively disrupts motor responding to d-amphetamine in young and mature rabbits. Neuropharmacology, 35(1), 71–78. doi: 10.1016/0028-3908(95)00151-4.PubMedGoogle Scholar
  86. Singer, L. T., Minnes, S., Short, E., Arendt, R., Farkas, K., Lewis, B., et al. (2004). Cognitive outcomes of preschool children with prenatal cocaine exposure. Journal of the American Medical Association, 291(20), 2448–2456. doi: 10.1001/jama.291.20.2448.PubMedGoogle Scholar
  87. Slotkin, T. A., Auman, J. T., & Seidler, F. J. (2003). Ontogenesis of beta-adrenoceptor signaling: Implications for perinatal physiology and for fetal effects of tocolytic drugs. The Journal of Pharmacology and Experimental Therapeutics, 306(1), 1–7. doi: 10.1124/jpet.102.048421.PubMedGoogle Scholar
  88. Slotkin, T. A., & Seidler, F. J. (2005). The alterations in cns serotonergic mechanisms caused by neonatal chlorpyrifos exposure are permanent. Brain Research. Developmental Brain Research, 158(1–2), 115–119. doi: 10.1016/j.devbrainres.2005.06.008.PubMedGoogle Scholar
  89. Song, Z. M., Undie, A. S., Koh, P. O., Fang, Y. Y., Zhang, L., Dracheva, S., et al. (2002). D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. The Journal of Neuroscience, 22(14), 6092–6105.PubMedGoogle Scholar
  90. Stanwood, G. D., & Levitt, P. (2001). The effects of cocaine on the developing nervous system. In: C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (pp. 519–536). Cambridge, MA: MIT Press.Google Scholar
  91. Stanwood, G. D., & Levitt, P. (2003). Repeated i.V. Cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring. Neuroscience, 122(3), 579–583. doi: 10.1016/j.neuroscience.2003.08.029.PubMedGoogle Scholar
  92. Stanwood, G. D., & Levitt, P. (2004). Drug exposure early in life: Functional repercussions of changing neuropharmacology during sensitive periods of brain development. Current Opinion in Pharmacology, 4, 65–71. doi: 10.1016/j.coph.2003.09.003.PubMedGoogle Scholar
  93. Stanwood, G. D., & Levitt, P. (2007). Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine d1 receptor activity and subcellular distribution. The Journal of Neuroscience, 27(1), 152–157. doi: 10.1523/JNEUROSCI.4591-06.2007.PubMedGoogle Scholar
  94. Stanwood, G. D., Parlaman, J. P., & Levitt, P. (2005). Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine d(1) receptor mutant mice. The Journal of Comparative Neurology, 487(3), 270–282. doi: 10.1002/cne.20548.PubMedGoogle Scholar
  95. Stanwood, G. D., Parlaman, J. P., & Levitt, P. (2006). Genetic or pharmacological inactivation of the dopamine d1 receptor differentially alters the expression of regulator of g-protein signalling (rgs) transcripts. The European Journal of Neuroscience, 24(3), 806–818. doi: 10.1111/j.1460-9568.2006.04970.x.PubMedGoogle Scholar
  96. Stanwood, G. D., Washington, R. A., & Levitt, P. (2001a). Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex. Cerebral Cortex (New York, N.Y.: 1991), 11, 430–440. doi: 10.1093/cercor/11.5.430.Google Scholar
  97. Stanwood, G. D., Washington, R. A., Shumsky, J. S., & Levitt, P. (2001b). Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience, 106(1), 5–14. doi: 10.1016/S0306-4522(01)00256-1.PubMedGoogle Scholar
  98. Sutcliffe, J. S., Delahanty, R. J., Prasad, H. C., McCauley, J. L., Han, Q., Jiang, L., et al. (2005). Allelic heterogeneity at the serotonin transporter locus (slc6a4) confers susceptibility to autism and rigid-compulsive behaviors. American Journal of Human Genetics, 77(2), 265–279. doi: 10.1086/432648.PubMedGoogle Scholar
  99. Thompson, B., Stanwood, G., & Levitt, P. (2005a). Double dissociation of the reinforcing properties of cocaine. Washington, DC: Society for Neuroscience.Google Scholar
  100. Thompson, B. L., Levitt, P., & Stanwood, G. D. (2005b). Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behavioural Brain Research, 164(1), 107–116. doi: 10.1016/j.bbr.2005.06.010.PubMedGoogle Scholar
  101. Trask, C. L., & Kosofsky, B. E. (2000). Developmental considerations of neurotoxic exposures. Neurologic Clinics, 18(3), 541–562. doi: 10.1016/S0733-8619(05)70210-3.PubMedGoogle Scholar
  102. Walderhaug, E., Magnusson, A., Neumeister, A., Lappalainen, J., Lunde, H., Refsum, H., et al. (2007). Interactive effects of sex and 5-httlpr on mood and impulsivity during tryptophan depletion in healthy people. Biological Psychiatry, 62(6), 593–599. doi: 10.1016/j.biopsych.2007.02.012.PubMedGoogle Scholar
  103. Wang, X. H., Levitt, P., Grayson, D. R., & Murphy, E. H. (1995a). Intrauterine cocaine exposure of rabbits: Persistent elevation of gaba-immunoreactive neurons in anterior cingulate cortex but not visual cortex. Brain Research, 689(1), 32–46. doi: 10.1016/0006-8993(95)00528-X.PubMedGoogle Scholar
  104. Wang, X. H., Levitt, P., O’Brien Jenkins, A., & Murphy, E. H. (1996). Normal development of tyrosine hydroxylase and serotonin immunoreactive fibers innervating anterior cingulate cortex and visual cortex in rabbits exposed prenatally to cocaine. Brain Research, 715(1–2), 221–224. doi: 10.1016/0006-8993(96)00012-1.PubMedGoogle Scholar
  105. Wang, H. Y., Runyan, S., Yadin, E., & Friedman, E. (1995b). Prenatal exposure to cocaine selectively reduces d1 dopamine receptor-mediated activation of striatal gs proteins. The Journal of Pharmacology and Experimental Therapeutics, 273(1), 492–498.PubMedGoogle Scholar
  106. Weinberger, D. R. (1995). From neuropathology to neurodevelopment. Lancet, 346(8974), 552–557. doi: 10.1016/S0140-6736(95)91386-6.PubMedGoogle Scholar
  107. Whitaker-Azmitia, P. M. (1991). Role of serotonin and other neurotransmitter receptors in brain development: Basis for developmental pharmacology. Pharmacological Reviews, 43(4), 553–561.PubMedGoogle Scholar
  108. Whitaker-Azmitia, P. M., Druse, M., Walker, P., & Lauder, J. M. (1996). Serotonin as a developmental signal. Behavioural Brain Research, 73(1–2), 19–29. doi: 10.1016/0166-4328(96)00071-X.PubMedGoogle Scholar
  109. Whitaker-Azmitia, P. M., Lauder, J. M., Shemmer, A., & Azmitia, E. C. (1987). Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: Further evidence for functional fetal serotonin receptors. Brain Research, 430(2), 285–289.PubMedGoogle Scholar
  110. Zerrate, M. C., Pletnikov, M., Connors, S. L., Vargas, D. L., Seidler, F. J., Zimmerman, A. W., et al. (2007). Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: Implications for autism. The Journal of Pharmacology and Experimental Therapeutics, 322(1), 16–22. doi: 10.1124/jpet.107.121483.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PharmacologyVanderbilt UniversityNashvilleUSA
  2. 2.Department of Pharmacology, Vanderbilt Kennedy Center for Research on Human DevelopmentVanderbilt UniversityNashvilleUSA
  3. 3.Center for Molecular NeuroscienceVanderbilt UniversityNashvilleUSA

Personalised recommendations