Skip to main content

Advertisement

Log in

Pleiotropic Effects of Neurotransmission during Development: Modulators of Modularity

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

The formation and function of the mammalian cerebral cortex relies on the complex interplay of a variety of genetic and environmental factors through protracted periods of gestational and postnatal development. Biogenic amine systems are important neuromodulators, both in the adult nervous system, and during critical epochs of brain development. Abnormalities in developmental programming likely contribute to developmental delays and multiple neurological and psychiatric disorders, often with symptom onset much later than the actual induction of pathology. We review several genetic and pharmacological models of dopamine, norepinephrine and serotonin modulation during development, each of which produces permanent changes in cerebral cortical structure and function. These models clearly illustrate the ability of these neurotransmitters to function beyond their classic roles and show their involvement in the development and modulation of fine brain circuitry that is sensitive to numerous effectors. Furthermore, these studies demonstrate the need to consider not only gene by environment interactions, but also gene by environment by developmental time interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Albert, P. R., & Lemonde, S. (2004). 5-HT1A receptors, gene repression, and depression: Guilt by association. The Neuroscientist, 10(6), 575–593. doi:10.1177/1073858404267382.

    PubMed  Google Scholar 

  • Andersen, S. L. (2005). Stimulants and the developing brain. Trends in Pharmacological Sciences, 26(5), 237–243. doi:10.1016/j.tips.2005.03.009.

    PubMed  Google Scholar 

  • Andrade, S. E., Raebel, M. A., Brown, J., Lane, K., Livingston, J., Boudreau, D., et al. (2008). Use of antidepressant medications during pregnancy: A multisite study. American Journal of Obstetrics and Gynecology, 198(2), 194, e191–e195.

    Google Scholar 

  • Ansorge, M. S., Zhou, M., Lira, A., Hen, R., & Gingrich, J. A. (2004). Early-life blockade of the 5-ht transporter alters emotional behavior in adult mice. Science, 306(5697), 879–881. doi:10.1126/science.1101678.

    PubMed  Google Scholar 

  • Bairy, K. L., Madhyastha, S., Ashok, K. P., Bairy, I., & Malini, S. (2007). Developmental and behavioral consequences of prenatal fluoxetine. Pharmacology, 79(1), 1–11. doi:10.1159/000096645.

    PubMed  Google Scholar 

  • Bonnin, A., Peng, W., Hewlitt, W., & Levitt, P. (2006). Expression mapping of 5-ht1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience, 141(2), 781–794.

    Google Scholar 

  • Bonnin, A., Torii, M., Wang, L., Rakic, P., & Levitt, P. (2007). Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nature Neuroscience, 10(5), 588–597. doi:10.1038/nn1896.

    PubMed  Google Scholar 

  • Burgess, N. K., Sweeten, T. L., McMahon, W. M., & Fujinami, R. S. (2006). Hyperserotoninemia and altered immunity in autism. Journal of Autism and Developmental Disorders, 36(5), 697–704. doi:10.1007/s10803-006-0100-7.

    PubMed  Google Scholar 

  • Buznikov, G. A., Shmukler, Y. B., & Lauder, J. M. (1996). From oocyte to neuron: Do neurotransmitters function in the same way throughout development? Cellular and Molecular Neurobiology, 16(5), 537–559. doi:10.1007/BF02152056.

    PubMed  Google Scholar 

  • Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10(9), 1103–1109. doi:10.1038/nn1964.

    PubMed  Google Scholar 

  • Carroll, J. C., Boyce-Rustay, J. M., Millstein, R., Yang, R., Wiedholz, L. M., Murphy, D. L., et al. (2007). Effects of mild early life stress on abnormal emotion-related behaviors in 5-htt knockout mice. Behavior Genetics, 37(1), 214–222. doi:10.1007/s10519-006-9129-9.

    PubMed  Google Scholar 

  • Cases, O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C., & Gaspar, P. (1996). Lack of barrels in the somatosensory cortex of monoamine oxidase a-deficient mice: Role of a serotonin excess during the critical period. Neuron, 16(2), 297–307. doi:10.1016/S0896-6273(00)80048-3.

    PubMed  Google Scholar 

  • Charman, T. (1999). Autism and the pervasive developmental disorders. Current Opinion in Neurology, 12, 155–159. doi:10.1097/00019052-199904000-00005.

    PubMed  Google Scholar 

  • Cheslack-Postava, K., Fallin, M. D., Avramopoulos, D., Connors, S. L., Zimmerman, A. W., Eberhart, C. G., et al. (2007). Beta2-adrenergic receptor gene variants and risk for autism in the agre cohort. Molecular Psychiatry, 12(3), 283–291.

    PubMed  Google Scholar 

  • Clancy, B., Kersh, B., Hyde, J., Darlington, R. B., Anand, K. J., & Finlay, B. L. (2007). Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics, 5(1), 79–94.

    PubMed  Google Scholar 

  • Clark, L., Cools, R., & Robbins, T. W. (2004). The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain and Cognition, 55(1), 41–53. doi:10.1016/S0278-2626(03)00284-7.

    PubMed  Google Scholar 

  • Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavioral Reviews, 26(2), 105–125. doi:10.1016/S0149-7634(01)00063-X.

    PubMed  Google Scholar 

  • Connors, S. L., Crowell, D. E., Eberhart, C. G., Copeland, J., Newschaffer, C. J., Spence, S. J., et al. (2005). Beta2-adrenergic receptor activation and genetic polymorphisms in autism: Data from dizygotic twins. Journal of Child Neurology, 20(11), 876–884. doi:10.1177/08830738050200110401.

    PubMed  Google Scholar 

  • Cote, F., Fligny, C., Bayard, E., Launay, J. M., Gershon, M. D., Mallet, J., et al. (2007). Maternal serotonin is crucial for murine embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 329–334. doi:10.1073/pnas.0606722104.

    PubMed  Google Scholar 

  • Dannlowski, U., Ohrmann, P., Bauer, J., Deckert, J., Hohoff, C., Kugel, H., et al. (2008). 5-httlpr biases amygdala activity in response to masked facial expressions in major depression. Neuropsychopharmacology, 33(2), 418–424. doi:10.1038/sj.npp.1301411.

    PubMed  Google Scholar 

  • Degnan, K. A., & Fox, N. A. (2007). Behavioral inhibition and anxiety disorders: Multiple levels of a resilience process. Development and Psychopathology, 19(3), 729–746. doi:10.1017/S0954579407000363.

    PubMed  Google Scholar 

  • Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 3(1), 79–83. doi:10.1016/0378-3782(79)90022-7.

    PubMed  Google Scholar 

  • Dow-Edwards, D., Mayes, L., Spear, L., & Hurd, Y. (1999). Cocaine and development: Clinical, behavioral, and neurobiological perspectives—A symposium report. Neurotoxicology and Teratology, 21(5), 481–490. doi:10.1016/S0892-0362(99)00008-2.

    PubMed  Google Scholar 

  • Drew, M. R., Simpson, E. H., Kellendonk, C., Herzberg, W. G., Lipatova, O., Fairhurst, S., et al. (2007). Transient overexpression of striatal d2 receptors impairs operant motivation and interval timing. The Journal of Neuroscience, 27(29), 7731–7739. doi:10.1523/JNEUROSCI.1736-07.2007.

    PubMed  Google Scholar 

  • Elliott, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65, 49–59. doi:10.1093/bmb/65.1.49.

    PubMed  Google Scholar 

  • Elston, G. N. (2003). Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cerebral Cortex (New York, N.Y.: 1991), 13(11), 1124–1138. doi:10.1093/cercor/bhg093.

    Google Scholar 

  • Evans, S. M., Cone, E. J., & Henningfield, J. E. (1996). Arterial and venous cocaine plasma concentrations in humans: Relationship to route of administration, cardiovascular effects and subjective effects. The Journal of Pharmacology and Experimental Therapeutics, 279(3), 1345–1356.

    PubMed  Google Scholar 

  • Feenstra, M. G. (1992). Functional neuroteratology of drugs acting on adrenergic receptors. Neurotoxicology, 13(1), 55–63.

    PubMed  Google Scholar 

  • Friedman, E., Yadin, E., & Wang, H. Y. (1996). Effect of prenatal cocaine on dopamine receptor-g protein coupling in mesocortical regions of the rabbit brain. Neuroscience, 70(3), 739–747. doi:10.1016/S0306-4522(96)83011-9.

    PubMed  Google Scholar 

  • Fukumoto, T., Kema, I. P., & Levin, M. (2005). Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Current Biology, 15(9), 794–803. doi:10.1016/j.cub.2005.03.044.

    PubMed  Google Scholar 

  • Gingras, J. L., & O’Donnell, K. J. (1998). State control in the substance-exposed fetus. I. The fetal neurobehavioral profile: An assessment of fetal state, arousal, and regulation competency. Annals of the New York Academy of Sciences, 846, 262–276. doi:10.1111/j.1749-6632.1998.tb09743.x.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1445–1453. doi:10.1098/rstb.1996.0129.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. S., Lidow, M. S., & Gallager, D. W. (1990). Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. The Journal of Neuroscience, 10(7), 2125–2138.

    PubMed  Google Scholar 

  • Gross, C., Zhuang, X., Stark, K., Ramboz, S., Oosting, R., Kirby, L., et al. (2002). Serotonin1a receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature, 416(6879), 396–400. doi:10.1038/416396a.

    PubMed  Google Scholar 

  • Hadders-Algra, M., Touwen, B. C., & Huisjes, H. J. (1986). Long-term follow-up of children prenatally exposed to ritodrine. British Journal of Obstetrics and Gynaecology, 93(2), 156–161.

    PubMed  Google Scholar 

  • Harvey, J. A. (2004). Cocaine effects on the developing brain: Current status. Neuroscience and Biobehavioral Reviews, 27(8), 751–764. doi:10.1016/j.neubiorev.2003.11.006.

    PubMed  Google Scholar 

  • Hedlund, P. B., & Sutcliffe, J. G. (2004). Functional, molecular and pharmacological advances in 5-ht7 receptor research. Trends in Pharmacological Sciences, 25(9), 481–486. doi:10.1016/j.tips.2004.07.002.

    PubMed  Google Scholar 

  • Hirshfeld, D. R., Rosenbaum, J. F., Biederman, J., Bolduc, E. A., Faraone, S. V., Snidman, N., et al. (1992). Stable behavioral inhibition and its association with anxiety disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 31(1), 103–111. doi:10.1097/00004583-199201000-00016.

    PubMed  Google Scholar 

  • Holmes, A., le Guisquet, A. M., Vogel, E., Millstein, R. A., Leman, S., & Belzung, C. (2005). Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neuroscience and Biobehavioral Reviews, 29(8), 1335–1346. doi:10.1016/j.neubiorev.2005.04.012.

    PubMed  Google Scholar 

  • Holmes, A., Lit, Q., Murphy, D. L., Gold, E., & Crawley, J. N. (2003). Abnormal anxiety-related behavior in serotonin transporter null mutant mice: The influence of genetic background. Genes Brain & Behavior, 2(6), 365–380. doi:10.1046/j.1601-1848.2003.00050.x.

    Google Scholar 

  • Jenkins, A. J., Keenan, R. M., Henningfield, J. E., & Cone, E. J. (2002). Correlation between pharmacological effects and plasma cocaine concentrations after smoked administration. Journal of Analytical Toxicology, 26(7), 382–392.

    PubMed  Google Scholar 

  • Jones, L., Fischer, I., & Levitt, P. (1996). Nonuniform alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure. Cerebral Cortex (New York, N.Y.: 1991), 6(3), 431–445. doi:10.1093/cercor/6.3.431.

    Google Scholar 

  • Jones, L. B., Stanwood, G. D., Reinoso, B. S., Washington, R. A., Wang, H. Y., Friedman, E., et al. (2000). In utero cocaine-induced dysfunction of dopamine d1 receptor signaling and abnormal differentiation of cerebral cortical neurons. The Journal of Neuroscience, 20(12), 4606–4614.

    PubMed  Google Scholar 

  • Kagan, J., & Snidman, N. (1999). Early childhood predictors of adult anxiety disorders. Biological Psychiatry, 46(11), 1536–1541. doi:10.1016/S0006-3223(99)00137-7.

    PubMed  Google Scholar 

  • Kagan, J., Snidman, N., Kahn, V., & Towsley, S. (2007). The preservation of two infant temperaments into adolescence. Monographs of the Society for Research in Child Development, 72(2), 1–75. doi:10.1111/j.1540-5834.2007.00437.x.

    PubMed  Google Scholar 

  • Karmel, B. Z., & Gardner, J. M. (1996). Prenatal cocaine exposure effects on arousal-modulated attention during the neonatal period. Developmental Psychobiology, 29(5), 463–480. doi:10.1002/(SICI)1098-2302(199607)29:5<463::AID-DEV5>3.0.CO;2-M.

    PubMed  Google Scholar 

  • Kellendonk, C., Simpson, E. H., Polan, H. J., Malleret, G., Vronskaya, S., Winiger, V., et al. (2006). Transient and selective overexpression of dopamine d2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron, 49(4), 603–615. doi:10.1016/j.neuron.2006.01.023.

    PubMed  Google Scholar 

  • Kim, H., Lim, S. W., Kim, S., Kim, J. W., Chang, Y. H., Carroll, B. J., et al. (2006). Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression. Journal of the American Medical Association, 296(13), 1609–1618. doi:10.1001/jama.296.13.1609.

    PubMed  Google Scholar 

  • Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425. doi:10.1162/0898929042304796.

    PubMed  Google Scholar 

  • Lambe, E. K., Krimer, L. S., & Goldman-Rakic, P. S. (2000). Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. The Journal of Neuroscience, 20(23), 8780–8787.

    PubMed  Google Scholar 

  • Lauder, J. M. (1983). Hormonal and humoral influences on brain development. Psychoneuroendocrinology, 8(2), 121–155. doi:10.1016/0306-4530(83)90053-7.

    PubMed  Google Scholar 

  • Leonardo, E. D., & Hen, R. (2006). Genetics of affective and anxiety disorders. Annual Review of Psychology, 57, 117–137. doi:10.1146/annurev.psych.57.102904.190118.

    PubMed  Google Scholar 

  • Levitt, P., Eagleson, K. L., & Powell, E. M. (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends in Neurosciences, 27(7), 400–406. doi:10.1016/j.tins.2004.05.008.

    PubMed  Google Scholar 

  • Lewis, D. A., & Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annual Review of Neuroscience, 25, 409–432. doi:10.1146/annurev.neuro.25.112701.142754.

    PubMed  Google Scholar 

  • Lidow, M. S. (2003). Consequences of prenatal cocaine exposure in nonhuman primates. Brain Research. Developmental Brain Research, 147(1–2), 23–36. doi:10.1016/j.devbrainres.2003.09.001.

    PubMed  Google Scholar 

  • Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biological Psychiatry, 44(3), 151–162. doi:10.1016/S0006-3223(98)00139-5.

    PubMed  Google Scholar 

  • Luo, X., Persico, A. M., & Lauder, J. M. (2003). Serotonergic regulation of somatosensory cortical development: Lessons from genetic mouse models. Developmental Neuroscience, 25(2–4), 173–183. doi:10.1159/000072266.

    PubMed  Google Scholar 

  • Maciag, D., Simpson, K. L., Coppinger, D., Lu, Y., Wang, Y., Lin, R. C., et al. (2006). Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology, 31(1), 47–57.

    PubMed  Google Scholar 

  • Mann, J. J., Brent, D. A., & Arango, V. (2001). The neurobiology and genetics of suicide and attempted suicide: A focus on the serotonergic system. Neuropsychopharmacology, 24(5), 467–477. doi:10.1016/S0893-133X(00)00228-1.

    PubMed  Google Scholar 

  • Maschi, S., Clavenna, A., Campi, R., Schiavetti, B., Bernat, M., & Bonati, M. (2008). Neonatal outcome following pregnancy exposure to antidepressants: A prospective controlled cohort study. British Journal of Obstetrics and Gynaecology, 115(2), 283–289. doi:10.1111/j.1471-0528.2007.01518.x.

    PubMed  Google Scholar 

  • Mayes, L. C. (2002). A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicology and Teratology, 24(3), 385–395. doi:10.1016/S0892-0362(02)00200-3.

    PubMed  Google Scholar 

  • Mayes, L. C., Grillon, C., Granger, R., & Schottenfeld, R. (1998). Regulation of arousal and attention in preschool children exposed to cocaine prenatally. Annals of the New York Academy of Sciences, 846, 126–143. doi:10.1111/j.1749-6632.1998.tb09731.x.

    PubMed  Google Scholar 

  • Meneses, A. (1999). 5-ht system and cognition. Neuroscience and Biobehavioral Reviews, 23(8), 1111–1125. doi:10.1016/S0149-7634(99)00067-6.

    PubMed  Google Scholar 

  • Meyer, A., Seidler, F. J., Aldridge, J. E., & Slotkin, T. A. (2005). Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicology and Applied Pharmacology, 203(2), 154–166. doi:10.1016/j.taap. 2004.08.005.

    PubMed  Google Scholar 

  • Murphy, E. H., Fischer, I., Friedman, E., Grayson, D., Jones, L., Levitt, P., et al. (1997). Cocaine administration in pregnant rabbits alters cortical structure and function in their progeny in the absence of maternal seizures. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 114(3), 433–441. doi:10.1007/PL00005652.

    PubMed  Google Scholar 

  • Murphy, D. L., & Lesch, K. P. (2008). Targeting the murine serotonin transporter: Insights into human neurobiology. Nature Reviews Neuroscience, 9(2), 85–96. doi:10.1038/nrn2284.

    PubMed  Google Scholar 

  • Nakamura, K., Koyama, Y., Takahashi, K., Tsurui, H., Xiu, Y., Ohtsuji, M., et al. (2006). Requirement of tryptophan hydroxylase during development for maturation of sensorimotor gating. Journal of Molecular Biology, 363(2), 345–354. doi:10.1016/j.jmb.2006.08.051.

    PubMed  Google Scholar 

  • Oberlander, T. F., Bonaguro, R. J., Misri, S., Papsdorf, M., Ross, C. J., & Simpson, E. M. (2008). Infant serotonin transporter (slc6a4) promoter genotype is associated with adverse neonatal outcomes after prenatal exposure to serotonin reuptake inhibitor medications. Molecular Psychiatry, 13(1), 65–73. doi:10.1038/sj.mp. 4002007.

    PubMed  Google Scholar 

  • Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., & Toth, M. (1998). Increased anxiety of mice lacking the serotonin1a receptor. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10734–10739. doi:10.1073/pnas.95.18.10734.

    PubMed  Google Scholar 

  • Parlaman, J. P., Thompson, B. L., Levitt, P., & Stanwood, G. D. (2007). Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. European Journal of Pharmacology, 563(1–3), 124–129. doi:10.1016/j.ejphar.2007.02.035.

    PubMed  Google Scholar 

  • Pearson, K. H., Nonacs, R. M., Viguera, A. C., Heller, V. L., Petrillo, L. F., Brandes, M., et al. (2007). Birth outcomes following prenatal exposure to antidepressants. The Journal of Clinical Psychiatry, 68(8), 1284–1289.

    Article  PubMed  Google Scholar 

  • Persico, A. M., Di Pino, G., & Levitt, P. (2006). Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Research, 1095(1), 17–25. doi:10.1016/j.brainres.2006.04.006.

    PubMed  Google Scholar 

  • Pitzer, M., Schmidt, M. H., Esser, G., & Laucht, M. (2001). Child development after maternal tocolysis with beta-sympathomimetic drugs. Child Psychiatry and Human Development, 31(3), 165–182. doi:10.1023/A:1026419720410.

    PubMed  Google Scholar 

  • Popova, N. K. (2006). From genes to aggressive behavior: The role of serotonergic system. BioEssays, 28(5), 495–503. doi:10.1002/bies.20412.

    PubMed  Google Scholar 

  • Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., et al. (1998). Serotonin receptor 1a knockout: An animal model of anxiety-related disorder. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14476–14481. doi:10.1073/pnas.95.24.14476.

    PubMed  Google Scholar 

  • Ressler, K. J., & Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depression and Anxiety, 12(Suppl 1), 2–19. doi:10.1002/1520-6394(2000)12:1±<2::AID-DA2>3.0.CO;2-4.

    PubMed  Google Scholar 

  • Rhodes, M. C., Seidler, F. J., Abdel-Rahman, A., Tate, C. A., Nyska, A., Rincavage, H. L., et al. (2004). Terbutaline is a developmental neurotoxicant: Effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. The Journal of Pharmacology and Experimental Therapeutics, 308(2), 529–537. doi:10.1124/jpet.103.060095.

    PubMed  Google Scholar 

  • Richardson, G. A., Conroy, M. L., & Day, N. L. (1996). Prenatal cocaine exposure: Effects on the development of school-age children. Neurotoxicology and Teratology, 18(6), 627–634. doi:10.1016/S0892-0362(96)00121-3.

    PubMed  Google Scholar 

  • Rodier, P. M. (1980). Chronology of neuron development: Animal studies and their clinical implications. Developmental Medicine and Child Neurology, 22(4), 525–545.

    PubMed  Google Scholar 

  • Rodier, P. M. (1994). Vulnerable periods and processes during central nervous system development. Environmental Health Perspectives, 102(Suppl 2), 121–124. doi:10.2307/3431828.

    PubMed  Google Scholar 

  • Rodier, P. M. (1995). Developing brain as a target of toxicity. Environmental Health Perspectives, 103(Suppl 6), 73–76. doi:10.2307/3432351.

    PubMed  Google Scholar 

  • Rosenbaum, J. F., Biederman, J., Bolduc-Murphy, E. A., Faraone, S. V., Chaloff, J., Hirshfeld, D. R., et al. (1993). Behavioral inhibition in childhood: A risk factor for anxiety disorders. Harvard Review of Psychiatry, 1(1), 2–16. doi:10.3109/10673229309017052.

    PubMed  Google Scholar 

  • Schwartz, C. E., Snidman, N., & Kagan, J. (1999). Adolescent social anxiety as an outcome of inhibited temperament in childhood. Journal of the American Academy of Child and Adolescent Psychiatry, 38(8), 1008–1015.

    Article  PubMed  Google Scholar 

  • Silverstone, T. (1992). Appetite suppressants. A review. Drugs, 43(6), 820–836. doi:10.2165/00003495-199243060-00003.

    PubMed  Google Scholar 

  • Simansky, K. J., & Kachelries, W. J. (1996). Prenatal exposure to cocaine selectively disrupts motor responding to d-amphetamine in young and mature rabbits. Neuropharmacology, 35(1), 71–78. doi:10.1016/0028-3908(95)00151-4.

    PubMed  Google Scholar 

  • Singer, L. T., Minnes, S., Short, E., Arendt, R., Farkas, K., Lewis, B., et al. (2004). Cognitive outcomes of preschool children with prenatal cocaine exposure. Journal of the American Medical Association, 291(20), 2448–2456. doi:10.1001/jama.291.20.2448.

    PubMed  Google Scholar 

  • Slotkin, T. A., Auman, J. T., & Seidler, F. J. (2003). Ontogenesis of beta-adrenoceptor signaling: Implications for perinatal physiology and for fetal effects of tocolytic drugs. The Journal of Pharmacology and Experimental Therapeutics, 306(1), 1–7. doi:10.1124/jpet.102.048421.

    PubMed  Google Scholar 

  • Slotkin, T. A., & Seidler, F. J. (2005). The alterations in cns serotonergic mechanisms caused by neonatal chlorpyrifos exposure are permanent. Brain Research. Developmental Brain Research, 158(1–2), 115–119. doi:10.1016/j.devbrainres.2005.06.008.

    PubMed  Google Scholar 

  • Song, Z. M., Undie, A. S., Koh, P. O., Fang, Y. Y., Zhang, L., Dracheva, S., et al. (2002). D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. The Journal of Neuroscience, 22(14), 6092–6105.

    PubMed  Google Scholar 

  • Stanwood, G. D., & Levitt, P. (2001). The effects of cocaine on the developing nervous system. In: C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (pp. 519–536). Cambridge, MA: MIT Press.

  • Stanwood, G. D., & Levitt, P. (2003). Repeated i.V. Cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring. Neuroscience, 122(3), 579–583. doi:10.1016/j.neuroscience.2003.08.029.

    PubMed  Google Scholar 

  • Stanwood, G. D., & Levitt, P. (2004). Drug exposure early in life: Functional repercussions of changing neuropharmacology during sensitive periods of brain development. Current Opinion in Pharmacology, 4, 65–71. doi:10.1016/j.coph.2003.09.003.

    PubMed  Google Scholar 

  • Stanwood, G. D., & Levitt, P. (2007). Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine d1 receptor activity and subcellular distribution. The Journal of Neuroscience, 27(1), 152–157. doi:10.1523/JNEUROSCI.4591-06.2007.

    PubMed  Google Scholar 

  • Stanwood, G. D., Parlaman, J. P., & Levitt, P. (2005). Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine d(1) receptor mutant mice. The Journal of Comparative Neurology, 487(3), 270–282. doi:10.1002/cne.20548.

    PubMed  Google Scholar 

  • Stanwood, G. D., Parlaman, J. P., & Levitt, P. (2006). Genetic or pharmacological inactivation of the dopamine d1 receptor differentially alters the expression of regulator of g-protein signalling (rgs) transcripts. The European Journal of Neuroscience, 24(3), 806–818. doi:10.1111/j.1460-9568.2006.04970.x.

    PubMed  Google Scholar 

  • Stanwood, G. D., Washington, R. A., & Levitt, P. (2001a). Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex. Cerebral Cortex (New York, N.Y.: 1991), 11, 430–440. doi:10.1093/cercor/11.5.430.

    Google Scholar 

  • Stanwood, G. D., Washington, R. A., Shumsky, J. S., & Levitt, P. (2001b). Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience, 106(1), 5–14. doi:10.1016/S0306-4522(01)00256-1.

    PubMed  Google Scholar 

  • Sutcliffe, J. S., Delahanty, R. J., Prasad, H. C., McCauley, J. L., Han, Q., Jiang, L., et al. (2005). Allelic heterogeneity at the serotonin transporter locus (slc6a4) confers susceptibility to autism and rigid-compulsive behaviors. American Journal of Human Genetics, 77(2), 265–279. doi:10.1086/432648.

    PubMed  Google Scholar 

  • Thompson, B., Stanwood, G., & Levitt, P. (2005a). Double dissociation of the reinforcing properties of cocaine. Washington, DC: Society for Neuroscience.

  • Thompson, B. L., Levitt, P., & Stanwood, G. D. (2005b). Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behavioural Brain Research, 164(1), 107–116. doi:10.1016/j.bbr.2005.06.010.

    PubMed  Google Scholar 

  • Trask, C. L., & Kosofsky, B. E. (2000). Developmental considerations of neurotoxic exposures. Neurologic Clinics, 18(3), 541–562. doi:10.1016/S0733-8619(05)70210-3.

    PubMed  Google Scholar 

  • Walderhaug, E., Magnusson, A., Neumeister, A., Lappalainen, J., Lunde, H., Refsum, H., et al. (2007). Interactive effects of sex and 5-httlpr on mood and impulsivity during tryptophan depletion in healthy people. Biological Psychiatry, 62(6), 593–599. doi:10.1016/j.biopsych.2007.02.012.

    PubMed  Google Scholar 

  • Wang, X. H., Levitt, P., Grayson, D. R., & Murphy, E. H. (1995a). Intrauterine cocaine exposure of rabbits: Persistent elevation of gaba-immunoreactive neurons in anterior cingulate cortex but not visual cortex. Brain Research, 689(1), 32–46. doi:10.1016/0006-8993(95)00528-X.

    PubMed  Google Scholar 

  • Wang, X. H., Levitt, P., O’Brien Jenkins, A., & Murphy, E. H. (1996). Normal development of tyrosine hydroxylase and serotonin immunoreactive fibers innervating anterior cingulate cortex and visual cortex in rabbits exposed prenatally to cocaine. Brain Research, 715(1–2), 221–224. doi:10.1016/0006-8993(96)00012-1.

    PubMed  Google Scholar 

  • Wang, H. Y., Runyan, S., Yadin, E., & Friedman, E. (1995b). Prenatal exposure to cocaine selectively reduces d1 dopamine receptor-mediated activation of striatal gs proteins. The Journal of Pharmacology and Experimental Therapeutics, 273(1), 492–498.

    PubMed  Google Scholar 

  • Weinberger, D. R. (1995). From neuropathology to neurodevelopment. Lancet, 346(8974), 552–557. doi:10.1016/S0140-6736(95)91386-6.

    PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M. (1991). Role of serotonin and other neurotransmitter receptors in brain development: Basis for developmental pharmacology. Pharmacological Reviews, 43(4), 553–561.

    PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M., Druse, M., Walker, P., & Lauder, J. M. (1996). Serotonin as a developmental signal. Behavioural Brain Research, 73(1–2), 19–29. doi:10.1016/0166-4328(96)00071-X.

    PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M., Lauder, J. M., Shemmer, A., & Azmitia, E. C. (1987). Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: Further evidence for functional fetal serotonin receptors. Brain Research, 430(2), 285–289.

    PubMed  Google Scholar 

  • Zerrate, M. C., Pletnikov, M., Connors, S. L., Vargas, D. L., Seidler, F. J., Zimmerman, A. W., et al. (2007). Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: Implications for autism. The Journal of Pharmacology and Experimental Therapeutics, 322(1), 16–22. doi:10.1124/jpet.107.121483.

    PubMed  Google Scholar 

Download references

Acknowledgments

Drs. Thompson and Stanwood currently receive support from NICHD core grant P30HD15052 (GDS), F32DA020981 (BLT) and the Vanderbilt Kennedy Center (GDS & BLT). We thank Dr. Pat Levitt for useful discussions, insightful comments, and partial financial support. We also thank Dr. Kathie Eagleson and Dr. Daniel Campbell for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg D. Stanwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, B.L., Stanwood, G.D. Pleiotropic Effects of Neurotransmission during Development: Modulators of Modularity. J Autism Dev Disord 39, 260–268 (2009). https://doi.org/10.1007/s10803-008-0624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-008-0624-0

Keywords

Navigation