Journal of Abnormal Child Psychology

, Volume 43, Issue 1, pp 189–202 | Cite as

Interaction of Adrenocortical Activity and Autonomic Arousal on Children’s Externalizing and Internalizing Behavior Problems

  • Frances R. Chen
  • Adrian Raine
  • Liana Soyfer
  • Douglas A. Granger


The psychobiology of stress involves two major components, the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS). Research has revealed the association between behavior problems and the psychobiology of stress, yet findings are inconsistent and few studies have addressed the moderate correlations between behavior problems. This study examines the individual and interactive effects of HPA and ANS on child behavior problems while taking into account the comorbidity of externalizing and internalizing problems. Four saliva samples were collected from each participant in a community sample (N = 429; aged 11–12 years; 50.49 % male), which were assayed for cortisol (HPA) and alpha-amylase, sAA (ANS). Children’s behavior problems were assessed using parent-report and self-report versions of the Child Behavior Checklist. Latent variables were constructed to represent trait-like individual differences in cortisol and sAA. Low levels of HPA axis activity were associated with higher levels of both externalizing and internalizing problems, but only among children with low ANS arousal. The association between externalizing and internalizing problems diminished to non-significant after taking into account the influence of HPA axis activity and ANS arousal, which suggests that the psychobiology of stress explains a fair proportion of comorbidity of behavior problems. The findings support that interaction between HPA axis and ANS functioning has potential to clarify prior mixed findings and advance our understanding of the child behavior problems.


Cortisol Alpha-amylase Externalizing problems Internalizing problems Comorbidity Multisystem 



This project was funded, in part, under a grant from the Pennsylvania Department of Health (SAP# 4100043366). The Department specifically disclaims responsibility for any analyses, interpretations or conclusions. It was also supported by the Clinical & Translational Research Center, Perelman School of Medicine, University of Pennsylvania (grant number UL1-RR-024134).

Conflict of Interest

In the interest of full disclosure, Douglas A. Granger is founder and Chief Scientific and Strategy Advisor at Salimetrics LLC. DAG’s relationships with these entities are managed by the policies of the Conflict of Interest Committee at the Johns Hopkins Unversity and the Office of Research Integrity and Assurance at Arizona State University.


  1. Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms & profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.Google Scholar
  2. Aiken, L. S., & West, S. G. (1991). Multiple regression: testing and interpreting interactions. Thousand Oaks, CA: Sage.Google Scholar
  3. Alink, L. R. A., van IJzendoorn, M. H., Bakerman-Kranenburg, M. J., Mesman, J., Juffer, F., & Koot, H. M. (2008). Cortisol and externalizing behavior in children and adolescents: mixed meta-analytic evidence for the inverse relation of basal cortisol and cortisol reactivity with externalizing behavior. Developmental Psychobiology, 50, 427–450.PubMedGoogle Scholar
  4. Alink, L. R. A., Cicchetti, D., Kim, J., & Rogosch, F. A. (2012). Longitudinal associations among child maltreatment, social functioning, and cortisol regulation. Developmental Psychology, 48, 224–236.PubMedCentralPubMedGoogle Scholar
  5. Allwood, M. A., Handwerger, K., Kivlighan, K. T., Granger, D. A., & Stroud, L. R. (2011). Direct and moderating links of salivary alpha-amylase and cortisol stress-reactivity to youth behavioral and emotional adjustment. Biological Psychology, 88, 57–64.PubMedCentralPubMedGoogle Scholar
  6. Azar, R., Zoccolillo, M., Paquette, D., Quiros, E., Baltzer, F., & Tremblay, R. E. (2004). Cortisol levels and conduct disorder in adolescent mothers. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 461–468.PubMedGoogle Scholar
  7. Badanes, L. S., Watamura, S. E., & Hankin, B. L. (2011). Hypocortisolism as a potential marker of allostatic load in children: associations with family risk and internalizing disorders. Development and Psychopathology, 23, 881–896.PubMedCentralPubMedGoogle Scholar
  8. Bauer, A. M., Quas, J. A., & Boyce, W. T. (2002). Associations between physiological reactivity and children’s behavior: advantages of a multisystem approach. Journal of Developmental and Behavioral Pediatrics, 23(2), 102–113.PubMedGoogle Scholar
  9. Beidel, D. C. (1991). Determining the reliability of psycho-physiological assessment in childhood anxiety. Journal of Anxiety Disorders, 5, 139–150.Google Scholar
  10. Booth, A., Granger, D. A., & Shirtcliff, E. A. (2008). Gender- and age- related differences in the association between social relationship quality and trait-levels of salivary cortisol. Journal of Research on Adolescence, 18, 239–260.Google Scholar
  11. Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw-Amerongen, A. V. (2003). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65, 245–258.PubMedGoogle Scholar
  12. Brennan, P. A., Raine, A., Schulsinger, F., Kirkegaard-Sorenson, L., Knop, J., Hutchings, B., & Mednick, S. A. (1997). Psychophysiological protective factors for male subjects at high risk for criminal behavior. American Journal of Psychiatry, 154, 853–855.PubMedGoogle Scholar
  13. Cannon, W. B. (1914). The interrelations of emotions as suggested by recent physiological researches. American Journal of Psychology, 25, 256–282.Google Scholar
  14. Chatterton, R. T., Jr., Vogelsong, K. M., Lu, Y. C., Ellman, A. B., & Hudgens, G. A. (1996). Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clinical Physiology, 16, 433–448.PubMedGoogle Scholar
  15. Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress system disorders: overview of behavioral and physical homeostasis. JAMA, 267, 1244–1252.PubMedGoogle Scholar
  16. Cicchetti, D., & Rogosch, F. A. (2001). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13, 783–804.PubMedGoogle Scholar
  17. Cicchetti, D., Rogosch, F. A., Gunnar, M. R., & Toth, S. L. (2010). The differential impacts of early physical and sexual abuse and internalizing problems on daytime cortisol rhythm in school-aged children. Child Development, 81, 252–269.PubMedCentralPubMedGoogle Scholar
  18. Cole, P., Zahn-Waxler, C., Fox, N., Usher, B., & Welsh, J. (1996). Individual differences in emotion regulation and behavior problems in preschool children. Journal of Abnormal Psychology, 105, 518–529.PubMedGoogle Scholar
  19. Davis, E. P., Donzella, B., Krueger, W. K., & Gunnar, M. R. (1999). The start of a new school year: individual differences in salivary cortisol response in relation to child temperament. Developmental Psychobiology, 35, 188–196.PubMedGoogle Scholar
  20. De Bellis, M. D. (2001). Developmental traumatology: the psychobiological development of maltreated children and its implications for research, treatment, and policy. Development and Psychopathology, 13, 539–564.PubMedGoogle Scholar
  21. de Vries-Bouw, M., Jansen, L., Vermeiren, R., Doreleijeers, T., van de Ven, P., & Popma, A. (2012). Concurrent attenuated reactivity of alpha-amylase and cortisol is related to disruptive behavior in male adolescents. Hormones and Behavior, 62, 77–85.PubMedGoogle Scholar
  22. Dierckx, B., Dieleman, G., Tulen, J. H. M., Treffers, P. D. A., Utens, E. M. W. J., Verhulst, F. C., & Tiemeier, H. (2012). Persistence of anxiety disorders and concomitant changes in cortisol. Journal of Anxiety Disorder, 26, 635–641.Google Scholar
  23. El-Sheikh, M., Erath, S. A., Buckhalt, J. A., Granger, D. A., & Mize, J. (2008). Cortisol and children’s adjustment: the moderating role of sympathetic nervous system activity. Journal of Abnormal Child Psychology, 36, 601–611.PubMedGoogle Scholar
  24. Folkow, B. (1985). Stress and blood pressure in adrenergic blood pressure regulation. In W. H. Birkenhager, B. Folkow, & H. A. J. Struykeer (Eds.), Current clinical practice series (pp. 87–93). Amsterdam: Excerpta Medica.Google Scholar
  25. Frankenhaeuser, M., Lundberg, U., & Forsman, L. (1980). Dissociation between sympathetic-adrenal and pituitary-adrenal responses to an achievement situation characterized by high controllability: comparison between type a and type B males and females. Biological Psychology, 10, 79–91.PubMedGoogle Scholar
  26. Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 1010–1016.PubMedGoogle Scholar
  27. Gao, Y., Raine, A., Venables, P. H., Dawson, M. E., & Mednick, S. A. (2010a). Association of poor childhood fear conditioning and adult crime. American Journal of Psychiatry, 167, 56–60.PubMedGoogle Scholar
  28. Gao, Y., Raine, A., Venables, P. H., Dawson, M. E., & Mednick, S. A. (2010b). Reduced electrodermal fear conditioning from ages 3 to 8 years is associated with aggressive behavior at age 8 years. Journal of Child Psychology and Psychiatry, 51, 550–558.PubMedCentralPubMedGoogle Scholar
  29. Goenjian, A. A., Yehuda, R., Pynoos, R. S., Steinberg, A. M., Tashjian, M., Yang, R. K., Najarian, L. M., & Fairbanks, L. A. (1996). Basal cortisol, dexamethasone suppression of cortisol, and MHPG in adolescents after the 1988 earthquake in Armenia. American Journal of Psychiatry, 153, 929–934.PubMedGoogle Scholar
  30. Gordis, E. B., Granger, D. A., Susman, E. J., & Trickett, P. K. (2006). Asymmetry between salivary cortisol and α-amylase reactivity to stress: relation to aggressive behavior in adolescents. Psychoneuroendocrinology, 31, 976–987.PubMedGoogle Scholar
  31. Granger, D. A., Kivlighan, K. T., El-Sheikh, M., Gordis, E. B., & Stroud, L. R. (2007). Salivary alpha-amylase in biobehavioral research: recent developments and applications. Annals of the New York Academy of Sciences, 1098, 122–144.PubMedGoogle Scholar
  32. Granger, D. A., Hibel, L. C., Fortunato, C. K., & Kapelewski, C. H. (2009). Medication effects on salivary cortisol: tactics and strategy to minimize impact in behavioral and developmental science. Psychoneuroendocrinology, 34, 1437–1448.PubMedGoogle Scholar
  33. Granger, D. A., Fortunato, C. K., Beltzer, E. K., Virag, M., Bright, M. A., & Out, D. (2012). Focus on methodology: salivary bioscience and research on adolescence: an integrated perspective. Journal of Adolescence, 35, 1081–1095.PubMedGoogle Scholar
  34. Gunnar, M. R., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Reviews of Psychology, 58, 145–173.Google Scholar
  35. Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: potential indices of risk in human development. Development and Psychopathology, 13, 515–538.PubMedGoogle Scholar
  36. Gurguis, G. N., Mefford, I. N., & Uhde, T. W. (1991). Hypothalamic–pituitary–adrenocortical activity in panic disorder: relationship to plasma catecholamine metabolites. Biological Psychiatry, 30(5), 502–506.PubMedGoogle Scholar
  37. Harrison, L., & Turpin, G. (2003). Implicit memory bias and trait-like anxiety: a psychophysiological analysis. Biological Psychology, 62, 97–114.PubMedGoogle Scholar
  38. Hart, J., Gunnar, M., & Cicchetti, D. (1995). Salivary cortisol in maltreated children: evidence of relations between neuroendocrine activity and social competence. Development and Psychopathology, 7, 11–26.Google Scholar
  39. Heim, U., Ehlert, D. H., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in pathophysiology of stress related bodily disorders. Psychoneuroendocrinology, 25, 1–35.PubMedGoogle Scholar
  40. Hellhammer, D., & Wade, S. (1993). Endocrine correlates of stress vulnerability. Psychotherapy and Psychosomatics, 60, 8–17.PubMedGoogle Scholar
  41. Hellhammer, D. H., Kirschbaum, C., & Belkien, L. (1987). Measurement of salivary cortisol under psychological stimulation. In J. N. Hingtgen, D. H. Hellhammer, & G. Huppmann (Eds.), Advanced methods in psychobiology (pp. 281–289). Toronto: Hogrefe.Google Scholar
  42. Henry, J. P. (1993). Biological basis of the stress response. Physiology, 8, 69–73.Google Scholar
  43. Jaccard, J., Wan, C. K., & Turrisi, R. (1990). The detection and interpretation of interaction effects between continuous variables in multiple regression. Multivariate Behavioral Research, 25, 467–478.Google Scholar
  44. Jaffee, S. R., Moffitt, T. E., & Caspi, A. (2002). Influence of adult domestic violence on children’s externalizing and internalizing problems: an environmentally informative twin study. Journal of the American Academy of Child and Adolescent Psychiatry, 42(9), 1095–1103.Google Scholar
  45. Johnson, S. B., Riley, A. W., Granger, D. A., & Riis, J. (2013). The science of early life toxic stress for pediatric practice and advocacy. Pediatrics, 131, 319–27.PubMedCentralPubMedGoogle Scholar
  46. Kagan, J. (1994). Galen’s prophecy: temperament in human nature. New York: Basic Books.Google Scholar
  47. Kagan, J., Reznick, J. S., & Snidman, N. (1988). Biological bases of childhood shyness. Science, 240, 167–171.PubMedGoogle Scholar
  48. Kaufman, J. (1991). Depressive disorders in maltreated children. Journal of the American Academy of Child and Adolescent Psychiatry, 30, 257–265.PubMedGoogle Scholar
  49. Kenny, D. A., & Zautra, A. (2001). Trait-state models for longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 243–263). Washington, DC: American Psychological Association.Google Scholar
  50. Kertes, D. A., Gunnar, M. R., Madsen, N. J., & Long, J. D. (2008). Early deprivation and home basal cortisol levels: a study of internationally adopted children. Development and Psychopathology, 20(2), 473–491.PubMedGoogle Scholar
  51. Kessler, R. C., & Wang, P. S. (2008). The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu. RevPublic Health, 29, 115–129.Google Scholar
  52. Kessler, R. C., Adler, L. A., Barkley, R., Biederman, J., Conners, C. K., Faraone, S. V., & Zaslavsky, A. M. (2005). Patterns and predictors of attention-deficit/hyperactivity disorder persistence into adulthood: results from the national comorbidity survey replication. Biological Psychiatry, 57(11), 1442–1451.PubMedCentralPubMedGoogle Scholar
  53. Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology, 19, 313–333.PubMedGoogle Scholar
  54. Kirschbaum, C., Steyer, R., Eid, M., Patalla, U., Schwenkmezger, P., & Hellhammer, D. (1990). Cortisol and behavior: 2. Application of a latent state-trait-like model to salivary cortisol. Psychoneuroendocrinology, 15, 297–307.PubMedGoogle Scholar
  55. Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at risk and normally developing adolescents: individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13, 695–719.PubMedGoogle Scholar
  56. Liu, J., Richmond, T. S., Raine, A., Cheney, R., Brodkin, E. S., Gur, R. C., & Gur, R. E. (2013). The healthy brains and behavior study: objectives, design, recruitment, and population coverage. International Journal of Methods in Psychiatric Research, 22(3), 204–216.Google Scholar
  57. Lopez-Duran, N. L., Kovacs, M., & George, C. J. (2009). Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: a meta-analysis. Psychoneuroendocrinology, 34, 1272–1283.PubMedCentralPubMedGoogle Scholar
  58. Lorber, M. F. (2004). Psychophysiology of aggression, psychopathy, and conduct problems: A meta-analysis. Psychological Bulletin, 130, 531–552.PubMedGoogle Scholar
  59. Lösel, F., & Farrington, D. P. (2012). Direct protective and buffering protective factors in the development of youth violence. American Journal of Preventitive Medicine, 43, S8–S23.Google Scholar
  60. Lovallo, W. R., & Thomas, T. L. (2000). Stress hormones in psychophysiological research: emotional, behavioral, and cognitive implications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Bernston (Eds.), Handbook of psychophysiology (2nd ed., pp. 342–367). New York: Cambridge University Press.Google Scholar
  61. Lundberg, U., & Frankenhaeuser, M. (1980). Pituitary-adrenal and sympathetic-adrenal correlates of distress and effort. Journal of Psychosomatic Research, 24, 125–130.PubMedGoogle Scholar
  62. McBurnett, K., Lahey, B. B., Rathouz, P. J., & Loeber, R. (2000). Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Archives of General Psychiatry, 57, 38–43.PubMedGoogle Scholar
  63. McBurnett, K., Raine, A., Stouthamer-Loeber, M., Loeber, R., Kumar, A. M., Kumar, M., & Lahey, B. B. (2005). Mood and hormone responses to psychological challenge in adolescent males with conduct problems. Biological Psychiatry, 57(10), 1109–1116.PubMedGoogle Scholar
  64. McEwen, B. S. (1998). Stress adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 33–44.PubMedGoogle Scholar
  65. Muthén, B. (2012). Latent variable interactions. Retrieved July 19, 2013, from
  66. Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus User’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  67. Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a noninvasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology, 34(4), 486–496.PubMedGoogle Scholar
  68. Nater, U. M., Rohleder, N., Gaab, J., Berger, S., Jud, A., Kirschbaum, C., & Ehlert, U. (2005). Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. International Journal of Psychophysiology, 55, 333–342.PubMedGoogle Scholar
  69. Nock, M. K., & Mendes, W. B. (2008). Physiological arousal, distress tolerance, and social problem-solving deficits among adolescent self-injurers. Journal of Consulting and Clinical Psychology, 76, 28–38.PubMedGoogle Scholar
  70. Nock, M. K., Kazdin, A. E., Hiripi, E., & Kessler, R. C. (2007). Lifetime prevalence, correlates, and persistence of oppositional defiant disorder: results from the national comorbidity survey replication. Journal of Child Psychology and Psychiatry, 48(7), 703–713.PubMedGoogle Scholar
  71. Nottelmann, E. D., & Jense, P. S. (1995). Comorbidity of disorders in children and adolescents: developmental perspectives. In T. H. Ollendick & R. J. Prinz (Eds.), Advances in clinical child psychology (Vol. 17, pp. 109–155). New York: Plenum Press.Google Scholar
  72. Oosterlaan, J., Geurts, H. M., Knol, D. L., & Sergeant, J. A. (2005). Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder. Psychiatry Research, 134, 1–10.PubMedGoogle Scholar
  73. Ortiz, J., & Raine, A. (2004). Heart rate level and antisocial behavior in children and adolescents: a meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 43(2), 154–162.PubMedGoogle Scholar
  74. Out, D., Bakermans-Kranenburg, M., Granger, D. A., Cobbaert, C. M., & van IJzendoorn, M. H. (2011). State and trait-like variance in salivary alpha-amylase: a behavior genetic study. Biological Psychology, 88, 147–154.PubMedGoogle Scholar
  75. Out, D., Granger, D. A., Sephton, S. E., & Segerstrom, S. C. (2013). Disentangling sources of individual differences in diurnal salivary alpha-amylase: reliability, stability and sensitivity to context. Psychoneuroendocrinology, 38(3), 367.PubMedGoogle Scholar
  76. Pajer, K., Gardner, W., Rubin, R. T., Perel, J., & Neal, S. (2001). Decreased cortisol levels in adolescent girls with conduct disorder. Archives of General Psychiatry, 58, 297–302.PubMedGoogle Scholar
  77. Peters, M. L., Godaert, G. L., Ballieux, R. E., van Vliet, M., Willemsen, J. J., Sweep, F. C. G. J., & Heijnen, C. J. (1998). Cardiovascular and endocrine responses to experimental stress: effects of mental effort and controllability. Psychoneuroendocrinology, 23, 1–17.PubMedGoogle Scholar
  78. Portnoy, J., Chen, F. R., & Raine, A. (2013). Biological protective factors for antisocial and criminal behavior. Journal of Criminal Justice, 41(5), 292–299.Google Scholar
  79. Raine, A. (1993). The psychopathology of crime: criminal behavior as a clinical disorder. San Diego, California: Academic.Google Scholar
  80. Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: a review. Journal of Abnormal Child Psychology, 30, 311–326.PubMedGoogle Scholar
  81. Raine, A. (2005). The interaction of biological and social measures in the explanation of antisocial and violent behavior. In D. Stoff & E. Susman (Eds.), Developmental psychobiology of aggression (pp. 13–42). New York: Cambridge University Press.Google Scholar
  82. Raine, A., Venables, P. H., & Williams, M. (1995). High autonomic arousal and electrodermal orienting at age 15 years as protective factors against criminal behavior at age 29 years. American Journal of Psychiatry, 152, 1595–1600.PubMedGoogle Scholar
  83. Reitz, E., Dekovic, M., & Meijer, A. M. (2006). Relations between parenting and externalizing and internalizing behavior problems in early adolescence: child behavior as moderator and predictor. Journal of Adolescence, 29(3), 419–436.PubMedGoogle Scholar
  84. Rohleder, N., & Nater, U. M. (2009). Determinants of salivary alphaamylase in humans and methodological considerations. Psychoneuroendocrinology, 34(4), 469–485.PubMedGoogle Scholar
  85. Schmidt, L. A., Fox, N. A., Rubin, K. H., Sternberg, E. M., Gold, P. W., Smith, C. C., & Schulkin, J. (1997). Behavioral and neuroendocrine responses in shy children. Developmental Psychobiology, 30, 127–140.PubMedGoogle Scholar
  86. Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus-pituitary-adrenal and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65, 450–460.PubMedGoogle Scholar
  87. Schulkin, J., Gold, P. W., & McEwen, B. S. (1998). Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology, 23, 219–243.PubMedGoogle Scholar
  88. Shannon, K. E., Beauchaine, T. P., Brenner, S. L., Neuhaus, E., & Gatzke- Kopp, L. (2007). Familial and temperamental predictors of resilience in children at risk for conduct disorder and depression. Development and Psychopathology, 19, 701–727.PubMedCentralPubMedGoogle Scholar
  89. Shirtcliff, E. A., Granger, D. A., Booth, A., & Johnson, D. (2005). Low salivary cortisol levels and externalizing behavior problems in youth. Development and Psychopathology, 17, 167–184.PubMedGoogle Scholar
  90. Sijtsema, J. J., Shoulberg, E. K., & Murray-Close, D. (2011). Physiological reactivity and different forms of aggression in girls: Moderating roles of rejection sensitivity and peer rejection. Biological Psychology, 86, 181–192.PubMedGoogle Scholar
  91. Skosnik, P. D., Chatterton, R. T., Swisher, T., & Park, S. (2000). Modulation of attentional inhibition by norephinephrine and cortisol after psychological stress. International Journal of Psychophysiology, 36, 59–68.PubMedGoogle Scholar
  92. Smider, N. A., Essex, M. J., Kalin, N. H., Buss, K. A., Klein, M. H., Davidson, R. J., & Goldsmith, H. H. (2002). Salivary cortisol as a predictor of socioemotional adjustment during kindergarten: a perspective study. Child Development, 73, 75–92.PubMedGoogle Scholar
  93. Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.). Boston: Pearson Education, Inc.Google Scholar
  94. Taylor, Z. E., Spinrad, T. L., VanSchyndel, S. K., Eisenberg, N., Huynh, J., Sulik, M. J., & Granger, D. A. (2012). Sociodemographic risk, parenting, and effortful control: relations to salivary alpha-amylase and cortisol in early childhood. Developmental Psychobiology, 55(8), 869–880.PubMedGoogle Scholar
  95. Tonhajzerova, I., Ondrejka, I., Javorka, K., Turianikova, Z., Farsky, I., & Javorka, M. (2010). Cardiac autonomic regulation is impaired in girls with major depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34, 613–618.Google Scholar
  96. van Bokhoven, I., Matthys, W., van Goozen, S. H. M., & van Engeland, H. (2005). Prediction of adolescent outcome in children with disruptive behavior disorders: a study of neurobiological, psychological and family factors. European Child and Adolescent Psychiatry, 14, 153–163.PubMedGoogle Scholar
  97. van Goozen, S. H. M., Matthys, W., Cohen-Kettenis, P. T., Buitelaar, J. K., & van Engeland, H. (2000). Hypothalamic-pituitary-adrenal axis and autonomic nervous system activity in disruptive children and matched controls. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 1438–1445.PubMedGoogle Scholar
  98. van Goozen, S. H., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133, 149–182.PubMedGoogle Scholar
  99. van Honk, J., Schutter, D. J. L. G., Hermans, E. J., Putman, P., Tuiten, A., & Koppeschaar, H. (2004). Testoterone shifts the balance between sensitivity for punishment and reward in healthy young women. Psychoneuroendocrinology, 29, 937–943.PubMedGoogle Scholar
  100. van Stegeren, A., Rohleder, N., Everaerd, W., & Wolf, O. T. (2006). Salivary alpha-amylase as marker for adrenergic activity during stress: effect of betablockade. Psychoneuroendocrinology, 31, 137–141.PubMedGoogle Scholar
  101. Vigil, J. M., Geary, D. C., Granger, D. A., & Flinn, M. V. (2010). Sex differences in salivary cortisol, alpha-amylase, and psychologicall functioning following hurricane Katrina. Child Development, 81(4), 1228–1240.PubMedGoogle Scholar
  102. Vreeburg, S. A., Zitman, F. G., van Pelt, J., Derijk, R. H., Verhagen, J. C., van Dyck, R., Hoogendijk, W. J., Smit, J. H., & Penninx, B. X. (2010). Salivary cortisol levels in persons with and without different anxiety disorders. Psychosomatic Medicine, 72(4), 340–347.PubMedGoogle Scholar
  103. Wedekind, D., Bandelow, B., Broocks, A., Hajak, G., & Ruther, E. (2000). Salivary, total plasma and plasma free cortisol in panic disorder. Journal of Neural Transmission, 107(7), 831–837.PubMedGoogle Scholar
  104. Weems, C. F., & Carrión, V. G. (2007). The association between PTSD symptoms and salivary cortisol in youth: the role of the time since the trauma. Journal of Traumatic Stress, 20, 903–907.PubMedGoogle Scholar
  105. Weems, C. F., Zakem, A. H., Costa, N. M., Cannon, M. F., & Watts, S. E. (2005). Physiological response and childhood anxiety: association with symptoms of anxiety disorders and cognitive bias. Journal of Clinical Child & Adolescent Psychology, 34, 712–723.Google Scholar
  106. Yehuda, R., Boisoneau, D., Mason, J. W., & Giller, E. L. (1993). Glucocorticoid receptor number and cortisol excretion in mood, anxiety, and psychotic disorders. Society of Biological Psychiatry, 34, 18–25.Google Scholar
  107. Young, E. A., Abelson, J., & Cameron, O. G. (2005). Interaction of brain noradrenergic system and the hypothalamic-pituitary-adrenal (HPA) axis in man. Psychoneuroendocrinology, 30, 807–814.PubMedGoogle Scholar
  108. Youngstrom, E., Loeber, R., & Stouthamer-Loeber, M. (2000). Patterns and correlations of agreement between parent, teacher, and male adolescent ratings of externalizing and internalizing problems. Journal of Consulting and Clinical Psychology, 68(6), 1038–1050.PubMedGoogle Scholar
  109. Zuckerman, M. (1979). Sensation seeking: beyond the optimum level of arousal. Hillsdale, NJ: Erlbaum.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Frances R. Chen
    • 1
  • Adrian Raine
    • 2
  • Liana Soyfer
    • 3
  • Douglas A. Granger
    • 4
    • 5
  1. 1.Department of CriminologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Criminology, Psychiatry, and PsychologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.School of NursingUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Institute for Interdisciplinary Salivary Bioscience ResearchArizona State UniversityTempeUSA
  5. 5.School of Nursing and Bloomberg School of Public HealthThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations