Tight chiral polytopes

Abstract

A chiral polytope with Schläfli symbol \(\{p_1, \ldots , p_{n-1}\}\) has at least \(2p_1 \cdots p_{n-1}\) flags, and it is called tight if the number of flags meets this lower bound. The Schläfli symbols of tight chiral polyhedra were classified in an earlier paper, and another paper proved that there are no tight chiral n-polytopes with \(n \ge 6\). Here we prove that there are no tight chiral 5-polytopes, describe 11 families of tight chiral 4-polytopes, and show that every tight chiral 4-polytope covers a polytope from one of those families.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D’Azevedo, A.B., Jones, G., Nedela, R., Škoviera, M.: Chirality groups of maps and hypermaps. J. Algebraic Combin. 29(3), 337–355 (2009)

    MathSciNet  Article  Google Scholar 

  2. 2.

    D’Azevedo, A.B., Jones, G., Schulte, E.: constructions of chiral polytopes of small rank. Canad. J. Math. 63(6), 1254–1283 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Conder, M.: The smallest regular polytopes of any given rank. Adv. Math. 236, 92–110 (2013)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Conder, M., Cunningham, G.: Tight orientably-regular polytopes. Ars Math. Contemp. 8(1), 68–81 (2015)

    Google Scholar 

  5. 5.

    Conder, M., Isabel, H., O’Reilly-Regueiro, E., Pellicer, D.: Construction of chiral 4-polytopes with alternating or symmetric automorphism group. J. Algebraic Combin. 42(1), 225–244 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Coxeter, H.S.M (1937) Regular Skew Polyhedra in Three and Four Dimension and, their Topological Analogues. In: Proc. London Math. Soc. (2) 43(1), pp. 33–62

  7. 7.

    Coxeter, H.S.M.: Twisted honeycombs, vol. 4. AMS Bookstore, Providence (1970)

    Google Scholar 

  8. 8.

    Coxeter, H.S.M., Moser, W.O.J.: Generators and relations for discrete groups. Ergebnisse der Mathematik und ihrer Grenzgebiete Results in Mathematics and Related Areas, vol. 14, 4th edn. Springer, Berlin (1980)

    Google Scholar 

  9. 9.

    Cunningham, G.: Mixing chiral polytopes. J. Algebraic Combin. 36(2), 263–277 (2012)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cunningham, G.: Minimal equivelar polytopes. Ars Math. Contemp. 7(2), 299–315 (2014)

    Article  Google Scholar 

  11. 11.

    Cunningham, G.: Non-flat regular polytopes and restrictions on chiral polytopes. Electron. J. Combin. 24(3): #P3.59 (2017)

  12. 12.

    Cunningham, G.: Tight chiral polyhedra. Combinatorica 38(1), 115–142 (2018)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Cunningham, G., Pellicer, D.: Classification of tight regular polyhedra. J. Algebraic Combin. 43(3), 665–691 (2016)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Cunningham, G., Pellicer, D.: Open problems on \(k\)-orbit polytopes. Discrete Math. 341(6), 1645–1661 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Dress, A.W.M.: A combinatorial theory of Grünbaum’s new regular polyhedra. I. Grünbaum’s new regular polyhedra and their automorphism group. Aequationes Math. 23(2–3), 252–265 (1981)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Dress, A.W.M.: A combinatorial theory of Grünbaum’s new regular polyhedra. II. Complete enumeration. Aequationes Math. 29(2–3), 222–243 (1985)

    MathSciNet  Article  Google Scholar 

  17. 17.

    The GAP Group, GA—Groups, Algorithms, and Programming, Version 4.11.0 (2020)

  18. 18.

    Grünbaum, B.: Regular polyhedra-old and new. Aequationes Math. 16(1–2), 1–20 (1977)

    MathSciNet  Article  Google Scholar 

  19. 19.

    McMullen, P., Schulte, E.: Abstract regular polytopes, Encyclopedia of Mathematics and its Applications, vol. 92. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  20. 20.

    Monson, B., Pellicer, D., Williams, G.: Mixing and monodromy of abstract polytopes. Trans. Amer. Math. Soc. 366(5), 2651–2681 (2014)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Pellicer, D.: A construction of higher rank chiral polytopes. Discrete Math. 310(6–7), 1222–1237 (2010)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Schulte, E., Weiss, A.I.: Chiral polytopes, Applied geometry and discrete mathematics DIMACS Ser. Discrete Math. Theor. Comput Sci, vol. 4, pp. 493–516. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  23. 23.

    Schulte, E., IvićWeiss, A.: Chirality and projective linear groups. Discrete Math. 131(1–3), 221–261 (1994). https://doi.org/10.1016/0012-365X(94)90387-5

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabe Cunningham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cunningham, G., Pellicer, D. Tight chiral polytopes. J Algebr Comb (2021). https://doi.org/10.1007/s10801-021-01023-z

Download citation

Mathematics subject Classification (2010)

  • 52B05 (20B25, 52B15)