Abstract
In this paper, we give a characterisation for a class of edge-transitive Cayley graphs and provide a method for constructing edge-transitive graphs of valency 4 with arbitrarily large vertex stabiliser. In particular, in the last section, we obtain certain extensions of the results of Li et al. (Tetravalent edge-transitive Cayley graphs with odd number of vertices, J Comb Theory Ser B 96:164–181, 2006) on half-transitive graphs.
This is a preview of subscription content, access via your institution.
References
- 1.
Al-bar, J.A., Al-kenani, A.N., Muthana, N.M., Praeger, C.E., Spiga, P.: Finite edge-transitive oriented graphs of valency four: a global approach. Electron. J. Comb. 23, 1–10 (2016)
- 2.
Baik, Y.G., Feng, Y.Q., Sim, H.S., Xu, M.Y.: On the normality of Cayley graphs of abelian groups. Algebra Colloq. 5, 297–304 (1998)
- 3.
Bosma, W., Cannon, C., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)
- 4.
Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, P.: Atlas of Finite Groups. Oxford University Press, Oxford (1985)
- 5.
Corr, B.P., Praeger, C.E.: Normal edge-transitive Cayley graphs of Frobenius groups. J. Algebr. Comb. 42, 803–827 (2015)
- 6.
Detinko, A.S., Flannery, D.L.: Nilpotent primitive linear groups over finite fields. Commun. Algebra. 33, 497–505 (2005)
- 7.
Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York (1996)
- 8.
Doerk, K., Hawkes, T.: Finite Soluble Groups. Walter de Gruyter Co., Berlin (1992)
- 9.
Du, S.F., Xu, W.Q.: \(2\)-arc-transitive regular covers of \({ K}_{n, n}-n{ K}_2\) having the covering transformation group \({\mathbb{Z}}_p^3\). J. Aust. Math. Soc. 101, 145–170 (2016)
- 10.
Fang, X.G., Li, C.H., Xu, M.Y.: On edge-transitive Cayley graphs of valency four. Eur. J. Comb. 25, 1107–1116 (2004)
- 11.
Feng, Y.Q., Kwak, J.H., Wang, X.Y., Zhou, J.X.: Tetravalent half-arc-transitive graphs of order \(2pq\). J. Algebr. Comb. 33, 543–553 (2011)
- 12.
Feng, Y.Q., Kwak, J.H., Xu, M.Y., Zhou, J.X.: Tetravalent half-arc-transitive graphs of order \(p^4\). Eur. J. Comb. 29, 555–567 (2008)
- 13.
Godsil, C.D.: On the full automorphism group of a graph. Combinatorica 1, 243–256 (1981)
- 14.
Gorenstein, D.: Finite Groups. Harper and Row, New York (1968)
- 15.
Gorenstein, D.: Finite Simple Groups. Plenum Press, New York (1982)
- 16.
Guralnick, R.: Subgroups of prime power index in a simple group. J. Algebra 81, 304–311 (1983)
- 17.
Kazarin, L.S.: Groups that can be represented as a product of two solvable subgroups. Commun. Algebra 14, 1001–1066 (1986)
- 18.
Kutnar, K., Marušič, D., Sp̌arl, P.: An infinite family of half-arc-transitive graphs with universal reachability relation. Eur. J. Comb. 31, 1725–1734 (2010)
- 19.
Kuzman, B.: Arc-transitive elementary abelian covers of the complete graph \( K_5\). Linear Algebra Appl. 433, 1909–1921 (2010)
- 20.
Li, C.H.: Finite \(s\)-arc transitive Cayley graphs and flag-transitive projective planes. Proc. Amer. Math. Soc. 133, 31–41 (2005)
- 21.
Li, C.H., Liu, Z., Lu, Z.P.: The edge-transitive tetravalent Cayley graphs of square-free order. Discrete Math. 312, 1952–1967 (2012)
- 22.
Li, C.H., Lu, Z.P., Zhang, H.: Tetravalent edge-transitive Cayley graphs with odd number of vertices. J. Comb. Theory Ser. B. 96, 164–181 (2006)
- 23.
Li, C.H., Pan, J.M., Song, S.J., Wang, D.J.: A characterization of a family of edge-transitive metacirculant graphs. J. Comb. Theory Ser. B. 107, 12–25 (2014)
- 24.
Li, C.H., Rao, G., Song, S.J.: On finite self-complementary metacirculants. J. Algebr. Comb. 40, 1135–1144 (2014)
- 25.
Li, C.H., Xia, B.Z.: Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups, Mem. Amer. Math. Soc. (2020, in press)
- 26.
Liu, H.L., Wang, L.: Cubic arc-transitive Cayley graphs on Frobenius groups. J. Algebra Appl. 17, 1–9 (2018)
- 27.
Marušič, D., Nedela, R.: Maps and half-transitive graphs of valency \(4\). Eur. J. Comb. 19, 345–354 (1998)
- 28.
Marušič, D., Sp̌arl, P.: On quartic half-arc-transitive metacirculants. J. Algebr. Comb. 28, 365–395 (2008)
- 29.
Pan, J.M., Liu, Y., Huang, Z.H., Liu, C.L.: Tetravalent edge-transitive graphs of order \(p^2q\). Sci. China Math. 57(2), 293–302 (2014)
- 30.
Praeger, C.E.: An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to \(2\)-arc transitive graphs. J. Lond. Math. Soc. 47, 227–239 (1992)
- 31.
Praeger, C.E.: Finite normal edge-transitive Cayley graphs. Bull. Aust. Math. Soc. 60(2), 207–220 (1999)
- 32.
Song, S.J., Li, C.H., Wang, D.J.: Classifying a family of edge-transitive metacirculant graphs. J. Algebr. Comb. 35, 497–513 (2012)
- 33.
Song, S.J., Li, C.H., Wang, D.J.: A family of edge-transitive Frobenius metacirculants of small valency. Eur. J. Comb. 34, 512–521 (2013)
- 34.
Suzuki, M.: Group Theory I. Springer, Berlin, New York (1982)
- 35.
Wang, X.Y., Feng, Y.Q.: Tetravalent half-edge-transitive graphs and non-normal Cayley graphs. J. Graph Theory 70(2), 197–213 (2012)
- 36.
Weiss, R.M.: \(s\)-transitive graphs. Algebr. Methods Graph Theory 2, 827–847 (1981)
- 37.
Xu, M.Y.: Half-transitive graphs of prime-cube order. J. Algebr. Comb. 1(3), 275–282 (1992)
- 38.
Xu, M.Y.: Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math. 182, 309–319 (1998)
- 39.
Xu, W.Q., Zhu, Y.H., Du, S.F.: \(2\)-arc-transitive regular covers of \({ K}_{n, n}-n{ K}_2\) with the covering transformation group \({\mathbb{Z}}_p^2\). Ars Math. Contemp. 10, 269–280 (2016)
- 40.
Zhou, C.X., Feng, Y.Q.: An infinite family of tetravalent half-arc-transitive graphs. Discrete Math. 306, 2205–2211 (2006)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by Natural Science Foundation of China (No. 12061083); Educational Department Fund of Yunnan (No. 2019J0026); NSF of Yunnan Province (No. 2017FD071); Natural Science Foundation of China (Nos. 11671324; 11971391); Fundamental Research Funds for the Central Universities (Nos. XDJK2019C116; XDJK2019B030) and Teaching Reform Project of Southwest University (No. 2018JY061).
Rights and permissions
About this article
Cite this article
Wang, L., Liu, Y. & Yan, Y. Tetravalent edge-transitive Cayley graphs of Frobenius groups. J Algebr Comb (2021). https://doi.org/10.1007/s10801-020-01005-7
Received:
Accepted:
Published:
Keywords
- Frobenius group
- Edge-transitive graph
- Coset graph
- Cayley graph
Mathematics Subject Classification
- 05C25
- 05E18