Abstract
In this paper, we study representations of ultragraph Leavitt path algebras via branching systems and, using partial skew ring theory, prove the reduction theorem for these algebras. We apply the reduction theorem to show that ultragraph Leavitt path algebras are semiprime and to completely describe faithfulness of the representations arising from branching systems, in terms of the dynamics of the branching systems. Furthermore, we study permutative representations and provide a sufficient criteria for a permutative representation of an ultragraph Leavitt path algebra to be equivalent to a representation arising from a branching system. We apply this criteria to describe a class of ultragraphs for which every representation (satisfying a mild condition) is permutative and has a restriction that is equivalent to a representation arising from a branching system.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
- 1.
Abrams, G., Ara, P., Siles Molina, M.: Leavitt path algebras, Lecture Notes in Mathematics Vol. 2191. Springer Verlag, London, (2017)
- 2.
Abrams, G., Aranda Pino, G.: The Leavitt path algebra of a graph. J. Algebra 293, 319–334 (2005)
- 3.
Ara, P., Rangaswamy, K.M.: Leavitt path algebras with at most countably many irreducible representations. Rev. Mat. Iberoam. 31(4), 1263–1276 (2015)
- 4.
Ara, P., Moreno, M.A., Pardo, E.: Nonstable K-theory for graph algebras. Algebr. Represent. Theory 10, 157–178 (2007)
- 5.
Ara, P., Hazrat, R., Li, H., Sims, A.: Graded Steinberg algebras and their representations. Algebra Number Theory 12(1), 131–172 (2018)
- 6.
Aranda Pino, G., Clark, J., Raeburn, I.: Kumjian-Pask algebras of higher-rank graphs. Trans. Amer. Math. Soc. 365(7), 3613–3641 (2013)
- 7.
Bratteli, O., Jorgensen, P.E.T.: Iterated function systems and permutation representations of the Cuntz algebra. Memoirs Amer. Math. Soc. 139, 663 (1999)
- 8.
Brown, J., Clark, L.O., Farthing, C., Sims, A.: Simplicity of algebras associated to étale groupoids. Semigroup Forum 88(2), 433–45 (2014)
- 9.
Chen, X.W.: Irreducible representations of Leavitt path algebras. Forum Math. 27(1), 549–57 (2015)
- 10.
Clark, L.O., Farthing, C., Sims, A., Tomforde, M.: A groupoid generalisation of Leavitt path algebras. Semigroup Forum 89, 501–51 (2014)
- 11.
de Castro, G.G., Gonçalves, D.: KMS and ground states on ultragraph C*-algebras. Integr. Equ. Oper. Theory 90, 63 (2018)
- 12.
Dokuchaev, M., Exel, R.: Associativity of crossed products by partial actions, enveloping actions and partial representations. Trans. Amer. Math. Soc. 357, 1931–1952 (2005)
- 13.
Farsi, C., Gillaspy, E., Kang, S., Packer, J.: Separable representations, KMS states, and wavelets for higher-rank graphs. J. Math. Anal. Appl. 434, 241–270 (2016)
- 14.
Farsi, C., Gillaspy, E., Kang, S., Packer, J.: Wavelets and graph C*-algebras. Appl. Numer. Harmon. Anal. 5, 35–86 (2017)
- 15.
Gil Canto, C., Gonçalves, D.: Representations of relative Cohn path algebras. J. Pure Appl. Algebra 224, 106310 (2020)
- 16.
Gonçalves, D., Li, H., Royer, D.: Branching systems and general Cuntz-Krieger uniqueness theorem for ultragraph C*-algebras. Internat. J. Math. 27(10), 1650083 (2016)
- 17.
Gonçalves, D., Li, H., Royer, D.: Faithful representations of graph algebras via branching systems. Can. Math. Bull. 59, 95–103 (2016)
- 18.
Gonçalves, D., Li, H., Royer, D.: Branching systems for higher rank graph C*-algebras. Glasg. Math. J. 60(3), 731–751 (2018)
- 19.
Gonçalves, D., Royer, D.: Perron-Frobenius operators and representations of the Cuntz-Krieger algebras for infinite matrices. J. Math. Anal. Appl. 351, 811–818 (2009)
- 20.
Gonçalves, D., Royer, D.: On the representations of Leavitt path algebras. J. Algebra 333, 258–272 (2011)
- 21.
Gonçalves, D., Royer, D.: Unitary equivalence of representations of algebras associated with graphs, and branching systems. Funct. Anal. Appl. 45, 45–59 (2011)
- 22.
Gonçalves, D., Royer, D.: Graph \({\rm C}^*\)-algebras, branching systems and the Perron-Frobenius operator. J. Math. Anal. Appl. 391, 457–465 (2012)
- 23.
Gonçalves, D., Royer, D.: Leavitt path algebras as partial skew group rings. Commun. Algebra 42, 127–143 (2014)
- 24.
Gonçalves, D., Royer, D.: Branching systems and representations of Cohn-Leavitt path algebras of separated graphs. J. Algebra 422, 413–426 (2015)
- 25.
Gonçalves, D., Royer, D.: Ultragraphs and shift spaces over infinite alphabets. Bull. Sci. Math. 141(1), 25–45 (2017)
- 26.
Gonçalves, D., Royer, D.: Infinite alphabet edge shift spaces via ultragraphs and their C*-algebras. Int. Math. Res. Not. 2177–2203, 2019 (2019)
- 27.
Gonçalves, D., Royer, D.: Irreducible and permutative representations of ultragraph Leavitt path algebras. Forum Math. 32, 417–431 (2020)
- 28.
Gonçalves, D., Royer, D.: Simplicity and chain conditions for ultragraph Leavitt path algebras via partial skew group ring theory. J. Aust. Math. Soc. 109(3), 299–319 (2020)
- 29.
Gonçalves, D., Sobottka, M.: Continuous shift commuting maps between ultragraph shift spaces. Discrete Contin. Dyn. Syst. 39, 1033–1048 (2019)
- 30.
Gonçalves, D., Uggioni, B.B.: Li-Yorke chaos for ultragraph shift spaces. Discrete Contin. Dyn. Syst. 40, 2347–2365 (2020)
- 31.
Gonçalves, D., Uggioni, B.B.: Ultragraph shift spaces and chaos. Bull. Sci. Math. 158, 102807 (2020)
- 32.
Hazrat, R., Rangaswamy, K.M.: On graded irreducible representations of Leavitt path algebras. J. Algebra 450, 458–486 (2016)
- 33.
Imanfar, M., Pourabbas, A., Larki, H.: The leavitt path algebras of ultragraphs. Kyungpook Math. J. 60, 21–43 (2020)
- 34.
Katsura, T., Muhly, P.S., Sims, A., Tomforde, M.: Graph algebras, Exel-Laca algebras, and ultragraph algebras coincide up to Morita equivalence. J. Reine Angew. Math. 640, 135–165 (2010)
- 35.
Marcolli, M., Paolucci, A.M.: Cuntz-Krieger Algebras and Wavelets on Fractals. Complex Anal. Oper. Theory 05(01), 41–81 (2011)
- 36.
Pino, G.Aranda, Barquero, D.Martín, González, C.Martín, Molina, M.Siles: The socle of a Leavitt path algebra. J. Pure Appl. Algebra 212(3), 500–509 (2008)
- 37.
Pino, G.Aranda, Barquero, D.Martín, González, C.Martín, Molina, M.Siles: Socle theory for Leavitt path algebras of arbitrary graphs. Rev. Mat. Iberoam. 26, 611–638 (2010)
- 38.
Ramos, C.C., Martins, N., Pinto, P.R., Ramos, J.S.: Cuntz-Krieger algebras representations from orbits of interval maps. J. Math. Anal. Appl. 341(2), 825–833 (2008)
- 39.
Rangaswamy, K.M.: Leavitt path algebras with finitely presented irreducible representations. J. Algebra 447, 624–648 (2016)
- 40.
Steinberg, B.: A groupoid approach to discrete inverse semigroup algebras. Adv. Math. 223, 689–727 (2010)
- 41.
Tomforde, M.: A unified approach to Exel-Laca algebras and \(C^\ast \)-algebras associated to graphs. J. Operator Theory 50, 345–368 (2003)
- 42.
Tomforde, M.: Simplicity of ultragraph algebras. Indiana Univ. Math. J 52(4), 901–925 (2003)
- 43.
Tomforde, M.: Leavitt path algebras with coefficients in a commutative ring. J. Pure App. Algebra 215(4), 471–484 (2011)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Daniel Gonçalves: This author is partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grant Numbers 304487/2017-1 and 406122/2018-0 and Capes-PrInt Grant Number 88881.310538/2018-01 - Brazil.
Rights and permissions
About this article
Cite this article
Gonçalves, D., Royer, D. Representations and the reduction theorem for ultragraph Leavitt path algebras. J Algebr Comb (2021). https://doi.org/10.1007/s10801-020-01004-8
Received:
Accepted:
Published:
Mathematics Subject Classification
- 16W50
- 16S35
- 16G99