Abstract
Harer and Zagier proved a recursion to enumerate gluings of a 2d-gon that result in an orientable genus g surface, in their work on Euler characteristics of moduli spaces of curves. Analogous results have been discovered for other enumerative problems, so it is natural to pose the following question: how large is the family of problems for which these so-called 1-point recursions exist? In this paper, we prove the existence of 1-point recursions for a class of enumerative problems that have Schur function expansions. In particular, we recover the Harer–Zagier recursion, but our methodology also applies to the enumeration of dessins d’enfant, to Bousquet-Mélou–Schaeffer numbers, to monotone Hurwitz numbers, and more. On the other hand, we prove that there is no 1-point recursion that governs single Hurwitz numbers. Our results are effective in the sense that one can explicitly compute particular instances of 1-point recursions, and we provide several examples. We conclude the paper with a brief discussion and a conjecture relating 1-point recursions to the theory of topological recursion.
This is a preview of subscription content, access via your institution.




Notes
- 1.
The extra factor of d in the definition of \(n_g(d)\) will have little bearing on our results, but is introduced here for consistency with the original Harer–Zagier recursion and other results in the literature. We remark that the 1-point recursions are generally simpler with this normalisation, as can be witnessed from (1) and (2).
- 2.
Observe that we are here expanding in z, while 2 has been expressed in terms of x. However, since they are related by a rational change of coordinates, this does not affect the existence of a 1-point recursion.
References
- 1.
Akhmedov, È.T., Shakirov, S.R.: Gluings of surfaces with polygonal boundaries. Funktsional. Anal. i Prilozhen. 43(4), 3–13 (2009)
- 2.
Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J.: Fermionic approach to weighted Hurwitz numbers and topological recursion. Comm. Math. Phys. 360(2), 777–826 (2018)
- 3.
Alexandrov, A., Lewanski, D., Shadrin, S.: Ramifications of Hurwitz theory, KP integrability and quantum curves. J. High Energy Phys. 5, 124 (2016)
- 4.
Andersen, J.E., Chekhov, L.O., Norbury, P., Penner, R.C.: Models of discretized moduli spaces, cohomological field theories, and Gaussian means. J. Geom. Phys. 98, 312–339 (2015)
- 5.
Borot, Gaëtan, Do, Norman, Karev, Maksim, Lewański, Danilo, Moskovsky, Ellena: Double Hurwitz numbers: polynomiality, topological recursion and intersection theory, (2020)
- 6.
Borot, G., Eynard, B.: All order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials. Quantum Topol. 6(1), 39–138 (2015)
- 7.
Bouchard, V., Serrano, D.H., Liu, X., Mulase, M.: Mirror symmetry for orbifold Hurwitz numbers. J. Differential Geom 98(3), 375–423 (2014)
- 8.
Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Remodeling the B-model. Comm. Math. Phys. 287(1), 117–178 (2009)
- 9.
Bouchard, Vincent, Mariño, Marcos: Hurwitz numbers, matrix models and enumerative geometry. In: From Hodge theory to integrability and TQFT tt*-geometry, volume 78 of Proc. Sympos. Pure Math., pages 263–283. Amer. Math. Soc., Providence, RI, (2008)
- 10.
Bousquet-Mélou, M., Schaeffer, G.: Enumeration of planar constellations. Adv. in Appl. Math. 24(4), 337–368 (2000)
- 11.
Chapuy, G., Féray, V., Fusy, É.: A simple model of trees for unicellular maps. J. Combin. Theory Ser. A 120(8), 2064–2092 (2013)
- 12.
Chekhov, Leonid: Eynard, Bertrand: Hermitian matrix model free energy: Feynman graph technique for all genera. J. High Energy Phys. 3, 14–18 (2006)
- 13.
Chekhov, Leonid: Norbury, Paul: Topological recursion with hard edges. Internat. J. Math. 30(3), 1950014–1950029 (2019)
- 14.
Chekhov, L.O.: The Harer-Zagier recursion for an irregular spectral curve. J. Geom. Phys. 110, 30–43 (2016)
- 15.
Do, N., Karev, M.: Monotone orbifold Hurwitz numbers. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 446(Kombinatorika i Teoriya Grafov. V):40–69, (2016)
- 16.
Do, N., Dyer, A., Mathews, D.V.: Topological recursion and a quantum curve for monotone Hurwitz numbers. J. Geom. Phys. 120, 19–36 (2017)
- 17.
Do, Norman, Karev, Maksim: Towards the topological recursion for double Hurwitz numbers. In Topological recursion and its influence in analysis, geometry, and topology, volume 100 of Proc. Sympos. Pure Math., pages 151–178. Amer. Math. Soc., Providence, RI, (2018)
- 18.
Do, N., Leigh, O., Norbury, P.: Orbifold Hurwitz numbers and Eynard-Orantin invariants. Math. Res. Lett. 23(5), 1281–1327 (2016)
- 19.
Do, N., Manescu, D.: Quantum curves for the enumeration of ribbon graphs and hypermaps. Commun. Number Theory Phys. 8(4), 677–701 (2014)
- 20.
Do, N., Norbury, P.: Topological recursion for irregular spectral curves. J. Lond. Math. Soc. (2) 97(3), 398–426 (2018)
- 21.
Dumitrescu, Olivia, Mulase, Motohico, Safnuk, Brad, Sorkin, Adam: The spectral curve of the Eynard-Orantin recursion via the Laplace transform. In: Algebraic and geometric aspects of integrable systems and random matrices, volume 593 of Contemp. Math., pages 263–315. Amer. Math. Soc., Providence, RI, (2013)
- 22.
Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion procedure. Comm. Math. Phys. 328(2), 669–700 (2014)
- 23.
Dunin-Barkowski, P., Orantin, N., Popolitov, A., Shadrin, S.: Combinatorics of loop equations for branched covers of sphere. Int. Math. Res. Not. IMRN 18, 5638–5662 (2018)
- 24.
Ekedahl, T., Lando, S., Shapiro, M., Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146(2), 297–327 (2001)
- 25.
Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)
- 26.
Eynard, B., Orantin, N.: Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture. Comm. Math. Phys. 337(2), 483–567 (2015)
- 27.
Eynard, B., Mulase, M., Safnuk, B.: The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers. Publ. Res. Inst. Math. Sci. 47(2), 629–670 (2011)
- 28.
Fang, B., Liu, C.-C.M., Zong, Z.: The Eynard-Orantin recursion and equivariant mirror symmetry for the projective line. Geom. Topol 21(4), 2049–2092 (2017)
- 29.
Gaberdiel, M.R., Klemm, A., Runkel, I.: Matrix model eigenvalue integrals and twist fields in the su (2)-wzw model. J. High Energy Phys. 2005(10), 107 (2005)
- 30.
Goulden, I.P., Guay-Paquet, M., Novak, J.: Monotone Hurwitz numbers in genus zero. Canad. J. Math. 65(5), 1020–1042 (2013)
- 31.
Goulden, I.P., Guay-Paquet, M.: Jonathan Novak. Polynomiality of monotone Hurwitz numbers in higher genera. Adv. Math. 238, 1–23 (2013)
- 32.
Goulden, I.P., Guay-Paquet, M., Novak, J.: Jonathan Monotone Hurwitz numbers and the HCIZ integral. Ann. Math. Blaise Pascal 21(1), 71–89 (2014)
- 33.
Goulden, I.P., Jackson, D.M., Vakil, R.: Towards the geometry of double Hurwitz numbers. Adv. Math. 198(1), 43–92 (2005)
- 34.
Goulden, I.P., Nica, A.: A direct bijection for the Harer-Zagier formula. J. Combin. Theory Ser. A 111(2), 224–238 (2005)
- 35.
Jie, G., Jockers, H., Klemm, A., Soroush, M.: Knot invariants from topological recursion on augmentation varieties. Comm. Math. Phys. 336(2), 987–1051 (2015)
- 36.
Guay-Paquet, M., Harnad, J.: 2D Toda \(\tau \)-functions as combinatorial generating functions. Lett. Math. Phys. 105(6), 827–852 (2015)
- 37.
Guay-Paquet, Mathieu, Harnad, J.: Generating functions for weighted Hurwitz numbers. J. Math. Phys., 58(8):083503, 28, (2017)
- 38.
Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85(3), 457–485 (1986)
- 39.
Harnad, J., Orlov, A.Y.: Hypergeometric \(\tau \)-functions, Hurwitz numbers and enumeration of paths. Comm. Math. Phys. 338(1), 267–284 (2015)
- 40.
Hurwitz, A.: Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39(1), 1–60 (1891)
- 41.
Kauers, Manuel, Paule, Peter: The concrete tetrahedron. Texts and Monographs in Symbolic Computation. SpringerWienNewYork, Vienna, 2011. Symbolic sums, recurrence equations, generating functions, asymptotic estimates
- 42.
Kazarian, M., Zograf, P.: Virasoro constraints and topological recursion for Grothendieck’s dessin counting. Lett. Math. Phys. 105(8), 1057–1084 (2015)
- 43.
Kontsevich, Maxim, Soibelman, Yan: Airy structures and symplectic geometry of topological recursion. In Topological recursion and its influence in analysis, geometry, and topology, volume 100 of Proc. Sympos. Pure Math., pages 433–489. Amer. Math. Soc., Providence, RI, (2018)
- 44.
Lando, Sergei K., Zvonkin, Alexander K.: Graphs on surfaces and their applications, volume 141 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, With an appendix by Don B. Zagier, Low-Dimensional Topology, II (2004)
- 45.
Lass, B.: Démonstration combinatoire de la formule de Harer-Zagier. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 155–160 (2001)
- 46.
Ledoux, M.: A recursion formula for the moments of the Gaussian orthogonal ensemble. Ann. Inst. Henri Poincaré Probab. Stat. 45(3), 754–769 (2009)
- 47.
Lipshitz, L.: The diagonal of a \(D\)-finite power series is \(D\)-finite. J. Algebra 113(2), 373–378 (1988)
- 48.
Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford classic texts in the physical sciences. Clarendon Press, (1998)
- 49.
Morozov, A., Shakirov, Sh.: From Brezin–Hikami to Harer—Zagier formulas for Gaussian correlators, (2010)
- 50.
Mulase, M., Shadrin, S., Spitz, L.: The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures. Commun. Number Theory Phys. 7(1), 125–143 (2013)
- 51.
Norbury, P.: String and dilaton equations for counting lattice points in the moduli space of curves. Trans. Amer. Math. Soc. 365(4), 1687–1709 (2013)
- 52.
Norbury, Paul: Quantum curves and topological recursion. In: String-Math 2014, volume 93 of Proc. Sympos. Pure Math., pages 41–65. Amer. Math. Soc., Providence, RI, (2016)
- 53.
Norbury, P., Scott, N.: Gromov-Witten invariants of \(\mathbb{P}^1\) and Eynard-Orantin invariants. Geom. Topol. 18(4), 1865–1910 (2014)
- 54.
Okounkov, A., Pandharipande, R.: Gromov-Witten theory, Hurwitz theory, and completed cycles. Ann. of Math. (2) 163(2), 517–560 (2006)
- 55.
Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7(4), 447–453 (2000)
- 56.
Yu, A.O., Shcherbin, D.M.: Hypergeometric solutions of soliton equations. Teoret. Mat. Fiz. 128(1), 84–108 (2001)
- 57.
Pittel, Boris: Another proof of the Harer-Zagier formula. Electron. J. Combin., 23(1):Paper 1.21, 11, (2016)
- 58.
Salvy, B., Zimmermann, P.: Gfun: A maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20(2), 163–177 (1994)
- 59.
Shapiro, B., Shapiro, M., Vainshtein, A.: Ramified coverings of \(S^2\) with one degenerate branch point and enumeration of edge-ordered graphs. In Topics in singularity theory, volume 180 of Amer. Math. Soc. Transl. Ser. 2, pages 219–227. Amer. Math. Soc., Providence, RI, (1997)
- 60.
Stanley, R.P.: Differentiably finite power series. European J. Combin. 1(2), 175–188 (1980)
- 61.
Tutte, W.T.: A census of planar maps. Canad. J. Math. 15, 249–271 (1963)
- 62.
Walsh, T., Lehman, A.B.: Counting rooted maps by genus. II. J. Combinatorial Theory Ser. B 13, 122–141 (1972)
Acknowledgements
The second author was partially supported by the Australian Research Council grants DE130100650 and DP180103891.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Example Maple code for 1-point recursions
Example Maple code for 1-point recursions
In Example 3, we asserted that a 1-point recursion for monotone Hurwitz numbers could be derived from several lines of code, using the gfun package for Maple [58]. We reproduce such code below, which may be adapted for other enumerative problems.

We next provide some explanatory notes to indicate how the code above produces the desired 1-point recursion. Recall that monotone Hurwitz numbers satisfy the relation
where \(\frac{u_{k+1}}{u_k} = \frac{G(k\hbar )}{k\hbar }\) and \(\frac{v_{k+1}}{v_k} = -\frac{G(-(k+1)\hbar )}{(k+1) \hbar }\).
-
Line 1 loads the gfun package into Maple.
-
Line 2 defines the weight generating function G(z) that produces monotone Hurwitz numbers.
-
Line 3 expresses the recursion satisfied by the sequence \(u_0, u_1, u_2, \ldots \) above.
-
Line 4 expresses the recursion satisfied by the sequence \(v_0, v_1, v_2, \ldots \) above.
-
Line 5 expresses the recursion satisfied by the sequence \(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots \).
-
Line 6 determines a recursion for the Cauchy product of the sequences \(u_0, u_1, u_2, \ldots \) and \(v_0, v_1, v_2, \ldots \).
-
Line 7 determines a recursion for the Hadamard product of the Cauchy product from the previous line and the sequence \(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots \).
-
The output asserts that
$$\begin{aligned} (-2\hbar +4d\hbar ) \, m(d) + (-d-1+\hbar ^2 d^3 + \hbar ^2 d^2) \, m(d+1) = 0. \end{aligned}$$By collecting the coefficient of \(h^{2g-1}\) and shifting the index, we obtain the 1-point recursion
$$\begin{aligned} d \, m_g(d) = 2(2d-3) \, m_g(d-1) + d(d-1)^2 \, m_{g-1}(d). \end{aligned}$$
Rights and permissions
About this article
Cite this article
Chaudhuri, A., Do, N. Generalisations of the Harer–Zagier recursion for 1-point functions. J Algebr Comb (2021). https://doi.org/10.1007/s10801-020-01003-9
Received:
Accepted:
Published:
Keywords
- Harer–Zagier formula
- 1-point functions
- Holonomic functions
- Schur functions
- Hurwitz numbers
- Ribbon graphs
- Dessins d’enfant
Mathematics Subject Classification
- 05A15
- 05E10
- 14N10