Journal of Algebraic Combinatorics

, Volume 45, Issue 1, pp 129–148 | Cite as

Families of optimal packings in real and complex Grassmannian spaces

  • Tomáš Kocák
  • Martin Niepel


A construction based on a \(4l \times 4l\) Hadamard matrix leads to a new family of optimal orthoplex packings in Grassmannian spaces \(G_{\mathbb {R}}(8l, 4l)\) and \(G_{\mathbb {C}}(4l, 2l)\). A related construction gives an optimal simplex packings in \(G_{\mathbb {R}}(8 l-1, 4 l - 1)\) and \(G_{\mathbb {R}}(8l-1, 4l)\) with the additional assumption of an \(8l \times 8l\) skew Hadamard matrix and a related 1-factorization of a complete graph. A construction of a maximal optimal simplex packings in \(G_{\mathbb {C}}(2l-1, l- 1)\) and \(G_{\mathbb {C}}(2l-1,l)\) is given.


Grassmannian packings Optimal packings Hadamard matrices Rankin bound Chordal distance Space-time codes 

Mathematics Subject Classification

Primary 51F25 51M20 52C17 Secondary 15A30 15B34 94B60 14M15 


  1. 1.
    Ashikhmin, A., Calderbank, A.R.: Space-time Reed–Muller codes for noncoherent MIMO transmission. In: International Symposium on Information Theory, pp. 1952–1956, Adelaide (2005)Google Scholar
  2. 2.
    Ashikhmin, A., Calderbank, A.R.: Grassmannian packings from operator Reed–Muller codes. IEEE Trans. Inf. Theory. 56, 5689–5714 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bos, L., Waldron, S.: Some remarks on Heisenberg frames and sets of equiangular lines. N. Z. J. Math 36, 113–137 (2007)MathSciNetMATHGoogle Scholar
  4. 4.
    Calderbank, A.R., Hardin, R.H., Rains, E.M., Shor, P.W., Sloane, N.J.A.: A group-theoretic framework for the construction of packings in Grassmannian spaces. J. Algebr. Comb. 9, 129–140 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Calderbank, R., Thompson, A., Xie, Y.: On block coherence of frames. Appl. Comput. Harmonic Anal. 38(1), 50–71 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. Chapman and Hall/CRC, Boca Raton (2006)Google Scholar
  7. 7.
    Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5, 139–159 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dhillon, I.S., Heath, R.W., Jr., Strohmer, T., Tropp, J.A.: Constructing packings in Grassmannian manifolds via alternating projection. Exp. Math. 17, 9–35 (2007)Google Scholar
  9. 9.
    Kocák, T.: Master’s thesis. Comenius University, Bratislava (2013)Google Scholar
  10. 10.
    Lucas, E.: Récréations Mathématiques, vol. 2. Gauthier-Villars, Paris (1883). (Sixième récréation: Les jeux de demoiselles, pp. 161–197)Google Scholar
  11. 11.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, Amsterdam (1977)MATHGoogle Scholar
  12. 12.
    Rasmussen, R.V., Trick, M.A.: Round robin scheduling: a survey. Eur. J. Oper. Res. 188(3), 617–636 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Roy, A.: Bounds for codes and designs in complex subspaces. J. Algebr. Comb. 31, 1–32 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Shor, P.W., Sloane, N.J.A.: A family of optimal packings in Grassmannian manifolds. J. Algebr. Comb. 7, 157–163 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Strohmer, T., Heath, R.W., Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmonic Anal. 14(3), 257–275 (2003)Google Scholar
  16. 16.
    Sustik, M.A., Tropp, J.A., Dhillon, I.S., Heath, R.W., Jr.: On the existence of equiangular tight frames. Linear Algebra Appl. 426, 619–635 (2007)Google Scholar
  17. 17.
    Sylvester, J.J.: A word on nonions. Johns Hopkins Univ. Circ. 1(17), 241–242 (1882)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.INRIA Lille - Nord Europe, SequeL teamVilleneuve d’AscqFrance

Personalised recommendations