Advertisement

Journal of Algebraic Combinatorics

, Volume 42, Issue 4, pp 1111–1134 | Cite as

Graded cluster algebras

  • Jan E. Grabowski
Article

Abstract

In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite-type cluster algebras without coefficients, giving a full classification. Translating the definition suitably again, we obtain a notion of multi-grading for (generalised) cluster categories. This setting allows us to prove additional properties of graded cluster algebras in a wider range of cases. We also obtain interesting combinatorics—namely tropical frieze patterns—on the Auslander–Reiten quivers of the categories.

Keywords

Cluster algebra Graded Cluster category Tropical frieze 

Mathematics Subject Classification

13F60 (Primary) 18E30 16G70 (Secondary) 

Notes

Acknowledgments

The author would particularly like to thank Stéphane Launois for many helpful discussions throughout the collaboration that this work originated from, Robert Marsh for useful references regarding cluster categories and Thomas Booker-Price for permission to reproduce the results of his calculations in Sects. 4.2 and 4.3. We also thank numerous colleagues with whom preliminary versions of these results were discussed following their presentation at various institutions.

References

  1. 1.
    Assem, I., Dupont, G., Schiffler, R.: On a category of cluster algebras. J. Pure Appl. Algebra 218(3), 553–582 (2014)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Barot, M., Kussin, D., Lenzing, H.: The Grothendieck group of a cluster category. J. Pure Appl. Algebra 212(1), 33–46 (2008)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Booker-Price, T.: Personal communication (2014)Google Scholar
  5. 5.
    Buan, A.B., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Buan, A.B., Marsh, R.J., Vatne, D.F.: Cluster structures from 2-Calabi-Yau categories with loops. Math. Z. 265(4), 951–970 (2010)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81(3), 595–616 (2006)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Conway, J.H., Coxeter, H.S.M.: Triangulated polygons and frieze patterns. Math. Gaz. 57(400), 87–94 (1973)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Coxeter, H.S.M.: Frieze patterns. Acta Arith. 18, 297–310 (1971)MATHMathSciNetGoogle Scholar
  10. 10.
    Dominguez, S., Geiss, C.: A Caldero–Chapoton formula for generalized cluster categories. J. Algebra 399, 887–893 (2014)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865–930 (2009)MATHMathSciNetGoogle Scholar
  12. 12.
    Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002). (electronic)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, vol. 167. American Mathematical Society, Providence, RI (2010)Google Scholar
  15. 15.
    Grabowski, J.E., Launois, S.: Graded quantum cluster algebras and an application to quantum Grassmannians. Proc. Lond. Math. Soc. (3) 109(3), 697–732 (2014)Google Scholar
  16. 16.
    Guo, L.: On tropical friezes associated with Dynkin diagrams. Int. Math. Res. Not. IMRN, no. 18, 4243–4284 (2013)Google Scholar
  17. 17.
    Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62(3), 339–389 (1987)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math. 172(1), 117–168 (2008)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Keller, B.: Cluster Algebras, Quiver Representations and Triangulated Categories, Triangulated Categories, London Mathematical Society Lecture Note Series, vol. 375. Cambridge University Press, Cambridge, pp. 76–160 (2010)Google Scholar
  20. 20.
    Palu, Y.: Cluster characters for 2-Calabi-Yau triangulated categories. Ann. Inst. Fourier (Grenoble) 58(6), 2221–2248 (2008)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Palu, Y.: Grothendieck group and generalized mutation rule for 2-Calabi-Yau triangulated categories. J. Pure Appl. Algebra 213(7), 1438–1449 (2009)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Propp, J.: The combinatorics of frieze patterns and Markoff numbers, pp. 29–34 (2008). arXiv:math/0511633v4

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsLancaster UniversityLancasterUK

Personalised recommendations