Skip to main content
Log in

A novel of 2D-3D combination carbon electrode to improve yeast microbial fuel cell performance

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study developed a unique and outstanding 2D-3D anode using an Activated Carbon (AC) or Charcoal Powder (CP) coating on the carbon felt (CF) surface. The anode structure’s high surface area and outstanding electrical conductivity were discovered to improve the enrichment and growth of yeast (Saccharomyces cerevisiae) and promote extracellular electron transfer (EET) from the yeast to the anode surface in a Microbial Fuel Cell (MFC) system. Subsequently, an extensive characterization including surface morphology, X-ray diffraction, electrochemical analysis, and biofilm adhesion tests, was performed to the hybrid material’s suitability as an MFC anode. The maximum power density of an MFC, installed with the CF/AC as a 2D-3D hybrid anode, was 54.58 mW m−2 or 442% higher, compared to the bare CF counterpart. In addition, the hybrid anode produced an internal resistance of 345 Ω in the MFC or about 77% lower, compared to the bare CF counterpart. This improved performance was in turn responsible for the 2.26-fold increase in the quantity of biofilm deposited at the CF/AC anode surface, compared to the bare CF counterpart. Therefore, this hybrid anode manufactured using a simple dip-coating method is a promising anode for high-performance MFC applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar R, Singh L, Zularisam AW, Hai FI (2018) Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. Int J Energy Res 42:369–394

    Article  Google Scholar 

  2. Li T, Cai Y, Yang XL, Wu Y, Yang YL, Song HL (2020) Microbial fuel cell-membrane bioreactor integrated system for wastewater treatment and bioelectricity production: overview. J Environ Eng 146:04019092

    Article  CAS  Google Scholar 

  3. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Kumar M (2020) Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci Total Environ 712:e135612

    Article  Google Scholar 

  4. Chen S, He G, Liu Q, Harnisch F, Zhou Y, Chen Y, Schröder U (2012) Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy Environ Sci 5:9769–9772

    Article  CAS  Google Scholar 

  5. Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1:417–429

    Article  CAS  Google Scholar 

  6. Veerubhotla R, Das D, Pradhan D (2017) A flexible and disposable battery powered by bacteria using eyeliner coated paper electrodes. Biosens Bioelectron 94:464–470

    Article  CAS  PubMed  Google Scholar 

  7. Hashemi N, Lackore JM, Sharifi F, Goodrich PJ, Winchell ML, Hashemi N (2016) A paper-based microbial fuel cell operating under continuous flow condition. Technology 4:98–103

    Article  Google Scholar 

  8. Feng J, Qian Y, Wang Z, Wang X, Xu S, Chen K, Ouyang P (2018) Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. J Biotechnol 275:1–6

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen DT, Taguchi K (2019) Enhancing the performance of E. coli-powered MFCs by using porous 3D anodes based on coconut activated carbon. Biochem Eng J 151:e107357

    Article  Google Scholar 

  10. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y (2019) Energy storage: the future enabled by nanomaterials. Science 366:e6468

    Article  Google Scholar 

  11. Sha J, Salvatierra RV, Dong P, Li Y, Lee SK, Wang T, Tour JM (2017) Three-dimensional rebar graphene. ACS Appl Mater Interfaces 9:7376–7384

    Article  CAS  PubMed  Google Scholar 

  12. Kholmanov IN, Magnuson CW, Piner R, Kim JY, Aliev AE, Tan C, Ruoff RS (2015) Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater 27:3053–3059

    Article  CAS  PubMed  Google Scholar 

  13. Zhu S, Li J, Li Q, He C, Liu E, He F, Zhao N (2016) Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications. Electrochim Acta 212:621–629

    Article  CAS  Google Scholar 

  14. Xiong P, Zhu J, Wang X (2015) Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. J Power Sources 294:31–50

    Article  CAS  Google Scholar 

  15. Zhou H, Zhang H, Zhao P, Yi B (2006) A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim Acta 51:6304–6312

    Article  CAS  Google Scholar 

  16. Cheng S, Wu J (2013) Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry 92:22–26

    Article  CAS  PubMed  Google Scholar 

  17. Liew KB, Daud WRW, Ghasemi M, Leong JX, Lim SS, Ismail M (2014) Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: a review. Int J Hydrogen Energy 39:4870–4883

    Article  Google Scholar 

  18. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review Journal of power sources 356:225–244

    Article  CAS  PubMed  Google Scholar 

  19. Smith RE, Davies TJ, Baynes NDB, Nichols RJ (2015) The electrochemical characterisation of graphite felts. J Electroanal Chem 747:29–38

    Article  CAS  Google Scholar 

  20. Di Blasi A, Di Blasi O, Briguglio N, Aricò AS, Sebastián D, Lázaro MJ, Antonucci V (2013) Investigation of several graphite-based electrodes for vanadium redox flow cell. J Power Sources 227:15–23

    Article  Google Scholar 

  21. Wang Y, Hasebe Y (2009) Carbon felt-based biocatalytic enzymatic flow-through detectors: chemical modification of tyrosinase onto amino-functionalized carbon felt using various coupling reagents. Talanta 79:1135–1141

    Article  PubMed  Google Scholar 

  22. Han L, Tricard S, Fang J, Zhao J, Shen W (2013) Prussian blue@ platinum nanoparticles/graphite felt nanocomposite electrodes: application as hydrogen peroxide sensor. Biosens Bioelectron 43:120–124

    Article  CAS  PubMed  Google Scholar 

  23. Xiao L, Damien J, Luo J, Jang HD, Huang J, He Z (2012) Crumpled graphene particles for microbial fuel cell electrodes. J Power Sources 208:187–192

    Article  CAS  Google Scholar 

  24. Shi J, Deng H, Lu L, Chen F, Xu H, Wang S, Xu F (2021) Performance of nickel–zinc battery with ZnO/activated carbon/3D network carbon felt as zinc negative electrode. J Appl Electrochem 51:1675–1687

    Article  CAS  Google Scholar 

  25. Shahzeydi A, Ghiaci M, Jameie L, Panjepour M (2019) Immobilization of N-doped carbon porous networks containing copper nanoparticles on carbon felt fibers for catalytic applications. Appl Surf Sci 485:194–203

    Article  CAS  Google Scholar 

  26. Ganiyu SO, Le TXH, Bechelany M, Esposito G, van Hullebusch ED, Oturan MA, Cretin M (2017) A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J Mater Chem A 5:3655–3666

    Article  CAS  Google Scholar 

  27. Shen Y, Wang W, Xiao K (2016) Synthesis of three-dimensional carbon felt supported TiO2 monoliths for photocatalytic degradation of methyl orange. J Environ Chem Eng 4:1259–1266

    Article  CAS  Google Scholar 

  28. Zhang C, Liang P, Yang X, Jiang Y, Bian Y, Chen C, Huang X (2016) Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron 81:32–38

    Article  CAS  PubMed  Google Scholar 

  29. Christwardana M, Frattini D, Duarte KD, Accardo G, Kwon Y (2019) Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Appl Energy 238:239–248

    Article  CAS  Google Scholar 

  30. Christwardana M, Hadiyanto H, Motto SA, Sudarno S, Haryani K (2020) Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production. Biomass Bioenerg 139:e105617

    Article  Google Scholar 

  31. Christwardana M, Handayani AS, Yudianti R, Joelianingsih J (2021) Cellulose-Carrageenan coated carbon felt as potential anode structure for yeast microbial fuel cell. Int J Hydrogen Energy 46:6076–6086

    Article  CAS  Google Scholar 

  32. Sayed ET, Barakat NA, Abdelkareem MA, Fouad H, Nakagawa N (2015) Yeast extract as an effective and safe mediator for the baker’s-yeast-based microbial fuel cell. Ind Eng Chem Res 54:3116–3122

    Article  CAS  Google Scholar 

  33. Tremaine JH, Miller JJ (1956) Effect of yeast extract, peptone, and certain nitrogen compounds on sporulation of Saccharomyces cerevisiae. Mycopathol Mycol Appl 7:241–250

    Article  CAS  PubMed  Google Scholar 

  34. Rouget G, Majidi B, Picard D, Gauvin G, Ziegler D, Mashreghi J, Alamdari H (2017) Electrical resistivity measurement of petroleum coke powder by means of four-probe method. Metall and Mater Trans B 48:2543–2550

    Article  CAS  Google Scholar 

  35. Maltseva AA, Bibikova SB, Kalinichenko VN, Gudkov MV, Melnikov VP, Varfolomeeva SD (2018) Determining the specific surface area of carbon electrode materials for electrodes of supercapacitors via the adsorption of methylene blue dye. Russ J Phys Chem A 92:772–777

    Article  Google Scholar 

  36. Banuelos JA, García-Rodríguez O, Rodríguez-Valadez FJ, Godínez LA (2015) Electrochemically prepared iron-modified activated carbon electrodes for their application in electro-Fenton and photoelectro-Fenton processes. J Electrochem Soc 162:E154

    Article  CAS  Google Scholar 

  37. Fan W, Gao W, Zhang C, Tjiu WW, Pan J, Liu T (2012) Hybridization of graphene sheets and carbon-coated Fe 3 O 4 nanoparticles as a synergistic adsorbent of organic dyes. J Mater Chem 22:25108–25115

    Article  CAS  Google Scholar 

  38. Šalkus T, Kazakevičius E, Banys J, Kranjčec M, Chomolyak AA, Neimet YY, Studenyak IP (2014) Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics 262:597–600

    Article  Google Scholar 

  39. Kumar D, Singh M, Singh AK (2018) Crystallite size effect on lattice strain and crystal structure of Ba1/4Sr3/4MnO3 layered perovskite manganite. AIP Conference Proceeding 1953:e030185

    Google Scholar 

  40. Christwardana M, Yoshi LA (2020) Performance and techno-economic analysis of scaling-up a single-chamber yeast microbial fuel cell as dissolved oxygen biosensor. Int J Renewable Energy Development 9:449–454

    Article  CAS  Google Scholar 

  41. Logan BE (2008) Microbial fuel cells. John Wiley & Sons

    Google Scholar 

  42. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choudhury P, Ray RN, Bandyopadhyay TK, Basak B, Muthuraj M, Bhunia B (2021) Process engineering for stable power recovery from dairy wastewater using microbial fuel cell. Int J Hydrogen Energy 46:3171–3182

    Article  CAS  Google Scholar 

  45. Yu B, Feng L, He Y, Yang L, Xun Y (2021) Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J Hazardous Mater 401:e123394

    Article  Google Scholar 

  46. Sahu O (2019) Sustainable and clean treatment of industrial wastewater with microbial fuel cell. Results in Eng 4:e100053

    Article  Google Scholar 

  47. Moharir PV, Tembhurkar AR (2018) Effect of recirculation on bioelectricity generation using microbial fuel cell with food waste leachate as substrate. Int J Hydrogen Energy 43:10061–10069

    Article  CAS  Google Scholar 

  48. Shi J, Zhao W, Liu C, Jiang T, Ding H (2017) Enhanced performance for treatment of Cr (VI)-containing wastewater by microbial fuel cells with natural pyrrhotite-coated cathode. Water 9:979

    Article  Google Scholar 

  49. Jiang Y, Song R, Cao L, Su Z, Ma Y, Liu Y (2019) Harvesting energy from cellulose through Geobacter sulfurreducens in unique ternary culture. Anal Chim Acta 1050:44–50

    Article  CAS  PubMed  Google Scholar 

  50. Kondaveeti S, Lee SH, Park HD, Min B (2020) Specific enrichment of different Geobacter sp. in anode biofilm by varying interspatial distance of electrodes in air-cathode microbial fuel cell (MFC). Electrochim Acta 331:e135388

    Article  Google Scholar 

  51. Sindhuja M, Harinipriya S, Bala AC, Ray AK (2018) Environmentally available biowastes as substrate in microbial fuel cell for efficient chromium reduction. J Hazard Mater 355:197–205

    Article  CAS  PubMed  Google Scholar 

  52. Carlson G, Silverstein J (1998) Effect of molecular size and charge on biofilm sorption of organic matter. Water Res 32:1580–1592

    Article  CAS  Google Scholar 

  53. Guo K, Soeriyadi AH, Patil SA, Prévoteau A, Freguia S, Gooding JJ, Rabaey K (2014) Surfactant treatment of carbon felt enhances anodic microbial electrocatalysis in bioelectrochemical systems. Electrochem Commun 39:1–4

    Article  Google Scholar 

  54. Ramasamy RP, Ren Z, Mench MM, Regan JM (2008) Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol Bioeng 101:101–108

    Article  CAS  PubMed  Google Scholar 

  55. Hussain A, Lee J, Ren H, Lee HS (2021) Spatial distribution of biofilm conductivity in a Geobacter enriched anodic biofilm. Chem Eng J 404:e126544

    Article  Google Scholar 

Download references

Acknowledgements

This project was fully supported by the Hibah Penelitian Dasar 2021 given by the Indonesian Ministry of Education, Culture, Research and Technology (No. 163/E4.1/AK.04.PT/2021). The authors would like to thank Muhammad Rizky Adam Maulana and Sumaeroh from the Department of Chemical Engineering—Institut Teknologi Indonesia for their assistance in collecting data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcelinus Christwardana or J. Joelianingsih.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christwardana, M., Joelianingsih, J. & Yoshi, L.A. A novel of 2D-3D combination carbon electrode to improve yeast microbial fuel cell performance. J Appl Electrochem 52, 801–812 (2022). https://doi.org/10.1007/s10800-022-01669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01669-y

Keywords

Navigation