Skip to main content

Advertisement

Log in

Fabrication of titanium nanotubes array: phase structure, hydrophilic properties, and electrochemical behavior approach

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Surface modification of Ti is the point of interest to researchers due to its promising biomedical applications, especially in bone replacement surgery. In the current work, a new bioactive (Ti) implant surface was prepared for possible dental and orthopedic applications by anodization and heat treatment. Ti was anodized at sequential potential periods in NH4F/glycerol bath at different glycerol concentrations and, then annealed to form crystalline TiO2 nanotube, labeled (cry TNT). Then the (cry TNT) was dipped in 0.29 g l−1 CaCl2 solution to diffuse Ca2+ ions into its infrastructure. The phase, morphology, and chemical composition of the prepared surface modified with/or without Ca2+ ions were examined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The bioactive stability of the surface was investigated via electrochemical impedance spectroscopy (EIS) in simulated body fluid solution (SBF) to investigate the effect of incorporation of Ca2+ ions to induce hydroxyapatite-like structure via the fitting process. In conclusion, 10% cry TNT surface with pore size 43 nm was found to bind to Ca2+ ions from the bulk solution to fill its pores resulting in an increase in the resistance from 78 to 118 kΩ. The produced new bioactive surface with its high hydrophilic properties represents a promising approach to design and fabricate innovative surfaces with high bonding ability for dental and orthopedic applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fadl-allah SA, Mohsen Q, El-Shenawy NS (2011) Stainless steel implantation-induced changes in surface characteristics, corrosion resistance, and hemato-biochemical parameters of male rat. J Am Sci 7:84–91

    Google Scholar 

  2. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R 47:49–121

    Article  Google Scholar 

  3. Bose S, Banerjee D, Shivaram A, Tarafder S, Bandyopadhyay A (2018) Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Mater Des 151:102–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Domínguez-Trujillo C, Ternero F, Rodríguez-Ortiz JA, Heise S, Boccaccini AR, Lebrato J, Torres Y (2018) Bioactive coatings on porous titanium for biomedical applications. Surf Coat Technol 349:584–592

    Article  Google Scholar 

  5. Stern JK, Hahn EE, Evian CI, Waasdorp J, Rosenberg ES (2015) Implant failure: prevalence, risk factors, management, and prevention. In: Dental implant complications: etiology, prevention, and treatment, vol 2. Wiley, pp 153–169

  6. Torres DL, Pereira MC, Silva JWJ, Codaro EN, Acciari HA (2015) Effect of phosphoric acid concentration and anodizing time on the properties of anodic films on titanium. J Eng Sci Technol 10:841–848

    Google Scholar 

  7. Kang KW, Limandri S, Castellano G, Suárez S, Trincavelli J (2017) Thickness determination of anodic titanium oxide films by electron probe microanalysis. Mater Charact 130:50–55

    Article  CAS  Google Scholar 

  8. Bauer S, Park J, von der Mark K, Schmuki P (2008) Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater 4:1576–1582

    Article  CAS  PubMed  Google Scholar 

  9. Macak JM, Tsuchiya H, Taveira L, Ghicov A, Schmuki P (2005) Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J Biomed Mater Res Part A 75:928–933

    Article  Google Scholar 

  10. Patel SB, Hamlekhan A, Royhman D, Butt A, Yuan J, Shokuhfar T, Sukotjo C, Mathew MT, Jursich G, Takoudis CG (2014) Enhancing surface characteristics of Ti–6Al–4V for bio-implants using integrated anodization and thermal oxidation. J Mater Chem B 2:3597–3608

    Article  CAS  PubMed  Google Scholar 

  11. Shah, A., Ismail, S. N. F., Hassam, M. A., and Daud, R. (2018) Surface modification on titanium alloy for biomedical application, Beddows C reference module in Materials Science and Materials Engineering. Elsevier, Amsterdam pp 1–9.

  12. Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955–8970

    Article  CAS  Google Scholar 

  13. Sun Y-S, Liu J-F, Wu C-P, Huang H-H (2015) Nanoporous surface topography enhances bone cell differentiation on Ti–6Al–7Nb alloy in bone implant applications. J Alloys Compd 643:S124–S132

    Article  CAS  Google Scholar 

  14. Das K, Bandyopadhyay A, Bose S (2008) Biocompatibility and in situ growth of TiO2 nanotubes on Ti using different electrolyte chemistry. J Am Ceram Soc 91:2808–2814

    Article  CAS  Google Scholar 

  15. Yao C, Webster TJ (2006) Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. J Nanosci Nanotechnol 6:2682–2692

    Article  CAS  PubMed  Google Scholar 

  16. Melghit K, Bouziane K (2008) Room temperature ferromagnetism of iron-doped rutile TiO2 nanorods synthesized by a low temperature method. J Alloys Compd 453:102–107

    Article  CAS  Google Scholar 

  17. Lin Y (2008) Photocatalytic activity of TiO2 nanowire arrays. Mater Lett 62:1246–1248

    Article  CAS  Google Scholar 

  18. Fang D, Huang K, Liu S, Li Z (2008) Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material. J Alloys Compd 464:L5–L9

    Article  CAS  Google Scholar 

  19. Sharifi T, Ghayeb Y, Mohammadi T, Momeni MM, Bagheri R, Song Z (2021) Surface treatment of titanium by in-situ anodizination and NiO photodeposition: enhancement of photoelectrochemical properties for water splitting and photocathodic protection of stainless steel. Appl Phys A 127:1–12

    Article  Google Scholar 

  20. Momeni MM, Akbarnia M, Ghayeb Y (2020) Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: alcohol series. Int J Hydrogen Energy 45:33552–33562

    Article  CAS  Google Scholar 

  21. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334

    Article  CAS  Google Scholar 

  22. Momeni MM, Hosseini MG (2014) Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs. J Mater Sci 25:5027–5034

    CAS  Google Scholar 

  23. Beranek R, Hildebrand H, Schmuki P (2003) Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid State Lett 6:B12

    Article  CAS  Google Scholar 

  24. Macak JM, Sirotna K, Schmuki P (2005) Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta 50:3679–3684

    Article  CAS  Google Scholar 

  25. Momeni MM, Hakimian M, Kazempour A (2016) Preparation and characterisation of manganese–TiO2 nanocomposites for solar water splitting. Surf Eng 32:514–519

    Article  CAS  Google Scholar 

  26. Acciari HA, Palma DPS, Codaro EN, Zhou Q, Wang J, Ling Y, Zhang J, Zhang Z (2019) Surface modifications by both anodic oxidation and ion beam implantation on electropolished titanium substrates. Appl Surf Sci 487:1111–1120

    Article  CAS  Google Scholar 

  27. Hatamleh MM, Wu X, Alnazzawi A, Watson J, Watts D (2018) Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dent Mater 34:676–683

    Article  CAS  PubMed  Google Scholar 

  28. Klein MO, Bijelic A, Ziebart T, Koch F, Kämmerer PW, Wieland M, Konerding MA, Al-Nawas B (2013) Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res 15:166–175

    Article  PubMed  Google Scholar 

  29. Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Coll Interface Sci 162:87–106

    Article  CAS  Google Scholar 

  30. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9:61–71

    CAS  PubMed  Google Scholar 

  31. Sun Y-S, Huang H-H (2018) Biphasic calcium phosphates/tantalum pentoxide hybrid layer and its effects on corrosion resistance and biocompatibility of titanium surface for orthopedic implant applications. J Alloys Compd 743:99–107

    Article  CAS  Google Scholar 

  32. Biggs MJP, Richards RG, Gadegaard N, McMurray RJ, Affrossman S, Wilkinson CDW, Oreffo ROC, Dalby MJ (2009) Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res Part A 91:195–208

    Article  Google Scholar 

  33. Dalby MJ, McCloy D, Robertson M, Wilkinson CDW, Oreffo ROC (2006) Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 27:1306–1315

    Article  CAS  PubMed  Google Scholar 

  34. Bierbaum S, Mulansky S, Bognár E, Kientzl I, Nagy P, Vrana NE, Weszl M, Boschke E, Scharnweber D, Wolf-Brandstetter C (2018) Osteogenic nanostructured titanium surfaces with antibacterial properties under conditions that mimic the dynamic situation in the oral cavity. Biomater Sci 6:1390–1402

    Article  CAS  PubMed  Google Scholar 

  35. He WEI, Gonsalves KE, Halberstadt CR (2007) Micro/nanomachining and fabrication of materials for biomedical applications. Biomed Nanostruct 40:25–47

    Article  Google Scholar 

  36. Park IS, Oh HJ, Bae TS (2013) Bioactivity and generation of anodized nanotubular TiO2 layer of Ti–6Al–4V alloy in glycerol solution. Thin Solid Films 548:292–298

    Article  CAS  Google Scholar 

  37. Allam NK, Grimes CA (2007) Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C 111:13028–13032

    Article  CAS  Google Scholar 

  38. Minagar S, Berndt CC, Wang J, Ivanova E, Wen C (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8:2875–2888

    Article  CAS  PubMed  Google Scholar 

  39. Abdel-Karim AM, Salama AH, El-Samahy FA, El-Sedik M, Osman FH (2017) Some dielectric properties of novel nano-s-triazine derivatives. J Phys Org Chem 30:3703

    Article  Google Scholar 

  40. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  41. Kunze J, Seyeux A, Schmuki P (2007) Anodic TiO2 layer conversion: fluoride-induced rutile formation at room temperature. Electrochem Solid State Lett 11:K11

    Article  Google Scholar 

  42. Rani S, Roy SC, Paulose M, Varghese OK, Mor GK, Kim S, Yoriya S, LaTempa TJ, Grimes CA (2010) Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys 12:2780–2800

    Article  CAS  PubMed  Google Scholar 

  43. Liu G, Wang K, Hoivik N, Jakobsen H (2012) Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38

    Article  CAS  Google Scholar 

  44. Joseph S, Sagayaraj P (2015) A cost effective approach for developing substrate stable TiO2 nanotube arrays with tuned morphology: a comprehensive study on the role of H2O2 and anodization potential. New J Chem 39:5402–5409

    Article  CAS  Google Scholar 

  45. Kulkarni M, Mazare A, Schmuki P, Iglič A (2014) Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine 111:111

    Google Scholar 

  46. Raja KS, Misra M, Paramguru K (2005) Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim Acta 51:154–165

    Article  CAS  Google Scholar 

  47. Liang H-C, Li X-Z (2009) Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2, 3-dichlorophenol in aqueous solution. J Hazard Mater 162:1415–1422

    Article  CAS  PubMed  Google Scholar 

  48. Fadl-allah SA, Mohsen Q (2010) Characterization of native and anodic oxide films formed on commercial pure titanium using electrochemical properties and morphology techniques. Appl Surf Sci 256:5849–5855

    Article  CAS  Google Scholar 

  49. Narayanan R, Lee H-J, Kwon T-Y, Kim K-H (2011) Anodic TiO2 nanotubes from stirred baths: hydroxyapatite growth & osteoblast responses. Mater Chem Phys 125:510–517

    Article  CAS  Google Scholar 

  50. Fathi AM, Shehata OS, Abdel-Karim AM (2019) The photoactivity and electrochemical behavior of porous titania (TiO2) in simulated saliva for dental implant application. SILICON 11:2353–2363

    Article  CAS  Google Scholar 

  51. Chen X-B, Li Y-C, Du Plessis J, Hodgson PD (2009) Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater 5:1808–1820

    Article  CAS  PubMed  Google Scholar 

  52. El-Rab SMFG, Fadl-allah SA, Montser AA (2012) Improvement in antibacterial properties of Ti by electrodeposition of biomimetic Ca–P apatite coat on anodized titania. Appl Surf Sci 261:1–7

    Article  Google Scholar 

  53. Yang G-l, He F-M, Song E, Hu J-A, Wang X-X, Zhao S-F (2010) In vivo comparison of bone formation on titanium implant surfaces coated with biomimetically deposited calcium phosphate or electrochemically deposited hydroxyapatite. Int J Oral Maxillofac Implants 25:12

  54. Kouhi M, Prabhakaran MP, Shamanian M, Fathi M, Morshed M, Ramakrishna S (2015) Electrospun PHBV nanofibers containing HA and bredigite nanoparticles: fabrication, characterization and evaluation of mechanical properties and bioactivity. Compos Sci Technol 121:115–122

    Article  CAS  Google Scholar 

  55. Allam NK, Grimes CA (2009) Effect of rapid infrared annealing on the photoelectrochemical properties of anodically fabricated TiO2 nanotube arrays. J Phys Chem C 113:7996–7999

    Article  CAS  Google Scholar 

  56. Yoriya S, Kittimeteeworakul W, Punprasert N (2012) Effect of anodization parameters on morphologies of TiO2 nanotube arrays and their surface properties. J Chem Chem Eng 6:686

    CAS  Google Scholar 

  57. Dikici T, Erol M, Toparli M, Çelik E (2014) Characterization and photocatalytic properties of nanoporous titanium dioxide layer fabricated on pure titanium substrates by the anodic oxidation process. Ceram Int 40:1587–1591

    Article  CAS  Google Scholar 

  58. Slimen H, Houas A, Nogier JP (2011) Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light. J Photochem Photobiol A 221:13–21

    Article  CAS  Google Scholar 

  59. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, Becker J (2007) Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 78:2171–2184

    Article  PubMed  Google Scholar 

  60. Prakash CGJ, Raj CC, Prasanth R (2017) Fabrication of zero contact angle ultra-super hydrophilic surfaces. J Colloid Interface Sci 496:300–310

    Article  Google Scholar 

  61. Vasilescu C, Drob SI, Moreno JMC, Osiceanu P, Popa M, Vasilescu E, Marcu M, Drob P (2015) Long-term corrosion resistance of new Ti–Ta–Zr alloy in simulated physiological fluids by electrochemical and surface analysis methods. Corros Sci 93:310–323

    Article  CAS  Google Scholar 

  62. Mohsen Q, Fadl-Allah SA, El-Shenawy NS (2012) Electrochemical impedance spectroscopy study of the adsorption behavior of bovine serum albumin at biomimetic calcium–phosphate coating. Int J Electrochem Sci 7:4510–4527

    CAS  Google Scholar 

  63. Kar A, Raja KS, Misra M (2006) Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf Coat Technol 201:3723–3731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Research Centre (NRC) for financial support to this work as a part of the Grant (AR111905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal M. Abdel-Karim.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Karim, A.M., Fadlallah, S.A. Fabrication of titanium nanotubes array: phase structure, hydrophilic properties, and electrochemical behavior approach. J Appl Electrochem 52, 17–33 (2022). https://doi.org/10.1007/s10800-021-01618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01618-1

Keywords

Navigation