Heterostructures of MXenes and CoNx-Graphene as highly active electrocatalysts for hydrogen evolution reaction in alkaline media


Hydrogen evolution reaction (HER) plays a vital role in renewable energy conversion for the development of hydrogen-based energy sources. Lately, heterostructures through hybridizing MXenes with two-dimensional materials have been successfully fabricated and attract much attention due to the exceptional performance as electrodes for Li ion storage and electrocatalysts for HER. Herein, we constructed heterostructures of CoNx-graphene (CoNx-G, x = 2 and 4) supported by MXenes (Ti3C2F2 and Ti3C2O2) monolayer as highly active electrocatalysts for HER. The theoretical results show that the CoN2-G/Ti3C2O2 heterostructure exhibits a high performance for HER with an over-potential (Ƞ) of only 0.33 V, and the rate-limiting step is determined to be the initial water dissociation process in alkaline media. The outstanding performance of CoN2-G/Ti3C2O2 is strongly attributed to the interfacial coupling between CoN2-G and the MXene substrate. Our finding demonstrates that the sluggish hydrogen evolution process in alkaline media can be facilitated by taking advantage of the fast charge transfer kinetics and interfacial coupling of MXenes.

Graphic abstract

Herein, we theoretically design and explore 2D hybrid materials of CoNx–G supported by MXene monolayers as highly active HER electrocatalysts by using first-principles calculations. The results show that the CoN2–G/Ti3C2O2 heterostructure has an outstanding HER performance with ΔGH* (0.21 eV) approaching zero as well as water molecule dissociation barrier (ΔGH–OH) of 0.30 eV in alkaline media. This exceptional performance is strongly attributed to the interfacial coupling between CoN2–G and the MXene substrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Marbán G, Valdés-Solís T (2007) Towards the hydrogen economy? Int J Hydrogen Energy 32:1625–1637. https://doi.org/10.1016/j.ijhydene.2006.12.017

    CAS  Article  Google Scholar 

  2. 2.

    Muradov N, Veziroǧlu T (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energy 30:225–237. https://doi.org/10.1016/j.ijhydene.2004.03.033

    CAS  Article  Google Scholar 

  3. 3.

    Izquierdo U, Barrio V, Cambra J et al (2012) Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. Int J Hydrogen Energy 37:7026–7033. https://doi.org/10.1016/j.ijhydene.2011.11.048

    CAS  Article  Google Scholar 

  4. 4.

    Wang M, Chen L, Sun L (2012) Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ Sci 5:6763–6778. https://doi.org/10.1039/C2EE03309G

    CAS  Article  Google Scholar 

  5. 5.

    Nørskov JK, Bligaard T, Logadottir A et al (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152:J23–J26. https://doi.org/10.1149/1.1856988

    CAS  Article  Google Scholar 

  6. 6.

    Tang Q, Jiang D (2016) Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal 6:4953–4961. https://doi.org/10.1021/acscatal.6b01211

    CAS  Article  Google Scholar 

  7. 7.

    Karchiyappan T (2019) A review on hydrogen energy production from electrochemical system: benefits and challenges. Energy Source Part A 41:902–909. https://doi.org/10.1080/15567036.2018.1520368

    CAS  Article  Google Scholar 

  8. 8.

    Hitz C, Lasia A (2001) Experimental study and modeling of impedance of the HER on porous Ni electrodes. J Electroanal Chem 500:213–222. https://doi.org/10.1016/S0022-0728(00)00317-X

    CAS  Article  Google Scholar 

  9. 9.

    Zheng S, Li X, Yan B et al (2017) Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7:1602733. https://doi.org/10.1002/aenm.201602733

    CAS  Article  Google Scholar 

  10. 10.

    Wang Z, Hao X, Jiang Z et al (2015) C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 137:15070–15073. https://doi.org/10.1021/jacs.5b09021

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Crnkovic F, Machado SAS, Avaca LA (2004) Electrochemical and morphological studies of electrodeposited Ni-Fe-Mo-Zn alloys tailored for water electrolysis. Int J Hydrogen Energy 29:249–254. https://doi.org/10.1016/S0360-3199(03)00212-X

    CAS  Article  Google Scholar 

  12. 12.

    You B, Zhang Y, Jiao Y et al (2019) Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water. Angew Chem Int Ed 58:11796–11800. https://doi.org/10.1002/anie.201906683

    CAS  Article  Google Scholar 

  13. 13.

    Xu K, Ding H, Zhang M et al (2017) Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv Mater 29:1606980. https://doi.org/10.1002/adma.201606980

    CAS  Article  Google Scholar 

  14. 14.

    Song Y, Yuan Z (2017) One-pot synthesis of Mo2N/NC catalysts with enhanced electrocatalytic activity for hydrogen evolution reaction. Electrochim Acta 246:536–543. https://doi.org/10.1016/j.electacta.2017.06.086

    CAS  Article  Google Scholar 

  15. 15.

    Lin H, Shi Z, He S et al (2016) Heteronanowires of MoC-Mo2 C as efficient electrocatalysts for hydrogen evolution reaction. Chem Sci 7:3399–3405. https://doi.org/10.1039/C6SC00077K

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Jin S (2017) Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett 2:1937–1938. https://doi.org/10.1021/acsenergylett.7b00679

    CAS  Article  Google Scholar 

  17. 17.

    Ekspong J, Sharifi T, Shchukarev A et al (2016) Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv Funct Mater 26:6766–6776. https://doi.org/10.1002/adfm.201601994

    CAS  Article  Google Scholar 

  18. 18.

    Yang Y, Lun Z, Xia G et al (2015) Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energ Environ Sci 8:3563–3571. https://doi.org/10.1039/C5EE02460A

    CAS  Article  Google Scholar 

  19. 19.

    Cao L, Luo Q, Liu W et al (2019) Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat Catal 2:134–141. https://doi.org/10.1038/s41929-018-0203-5

    CAS  Article  Google Scholar 

  20. 20.

    Naguib M, Mochalin VN, Barsoum MW et al (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005. https://doi.org/10.1002/adma.201304138

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Alhabeb M, Maleski K, Anasori B et al (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    CAS  Article  Google Scholar 

  22. 22.

    Couly C, Alhabeb M, Van Aken KL et al (2018) Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater 4:1700339–1700346. https://doi.org/10.1002/aelm.201700339

    CAS  Article  Google Scholar 

  23. 23.

    Ding L, Wei Y, Wang Y et al (2017) A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed 56:1825–1829. https://doi.org/10.1002/ange.201609306

    CAS  Article  Google Scholar 

  24. 24.

    Naguib M, Come J, Dyatkin B et al (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 16:61–64. https://doi.org/10.1016/j.elecom.2012.01.002

    CAS  Article  Google Scholar 

  25. 25.

    Wen Y, Rufford TE, Chen X et al (2017) Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38:368–376. https://doi.org/10.1016/j.nanoen.2017.06.009

    CAS  Article  Google Scholar 

  26. 26.

    Zhou S, Yang X, Pei W et al (2018) Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 10:10876–10883. https://doi.org/10.1039/C8NR01090K

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Aïssa B, Ali A, Mahmoud KA et al (2016) Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite. Appl Phys Lett 109:043109–043113. https://doi.org/10.1063/1.4960155

    CAS  Article  Google Scholar 

  28. 28.

    Zhang X, Lei J, Wu D et al (2016) A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. J Mater Chem A 4:4871–4876. https://doi.org/10.1039/C6TA00554C

    CAS  Article  Google Scholar 

  29. 29.

    Ling C, Shi L, Ouyang Y et al (2016) Transition metal-promoted V2CO2 (MXenes): a new and highly active catalyst for hydrogen evolution reaction. Adv Sci 3:1600180–1600187. https://doi.org/10.1002/advs.201600180

    CAS  Article  Google Scholar 

  30. 30.

    Gao G, Mullane AP, Du A (2016) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494–500. https://doi.org/10.1021/acscatal.6b02754

    CAS  Article  Google Scholar 

  31. 31.

    Novoselov K, Mishchenko A, Carvalho A et al (2016) 2D materials and van der waals heterostructures. Science 353:9439–9449. https://doi.org/10.1126/science.aac9439

    CAS  Article  Google Scholar 

  32. 32.

    Geim AK, Grigorieva IV (2013) Van der waals heterostructures. Nature 499:419–425. https://doi.org/10.1038/nature12385

    CAS  Article  Google Scholar 

  33. 33.

    Du Y, Kan X, Yang F et al (2018) MXene/graphene heterostructures as high-performance electrodes for li-ion batteries. ACS Appl Mater Inter 10:32867–32873. https://doi.org/10.1021/acsami.8b10729

    CAS  Article  Google Scholar 

  34. 34.

    Yan J, Ren C, Maleski K et al (2017) Flexible mxene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264–1701273. https://doi.org/10.1002/adfm.201701264

    CAS  Article  Google Scholar 

  35. 35.

    Zhang B, Liu J, Wang J et al (2017) Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37:74–80. https://doi.org/10.1016/j.nanoen.2017.05.011

    CAS  Article  Google Scholar 

  36. 36.

    Zhang X, Yang Z, Yang X et al (2018) Engineering the activity of CoNx-graphene for hydrogen evolution. Int J Hydrogen Energy 43:20573–20579. https://doi.org/10.1016/j.ijhydene.2018.09.043

    CAS  Article  Google Scholar 

  37. 37.

    Wang S, Zhang L, Qin Y et al (2017) N-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction: Insight into the active centre. J Power Sources 363:260–268. https://doi.org/10.1016/j.jpowsour.2017.07.107

    CAS  Article  Google Scholar 

  38. 38.

    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. https://doi.org/10.1103/PhysRevB.47.558

    CAS  Article  Google Scholar 

  39. 39.

    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  40. 40.

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Grimme S, Ehrlich S, Goerigk L et al (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  43. 43.

    Bai L, Kong L, Wen H et al (2019) First-principle study of high performance lithium/sodium storage of Ti3C2T2 nanosheets as electrode materials. Chin Phys B. https://doi.org/10.1088/1674-1056/ab592e

    Article  Google Scholar 

  44. 44.

    Medford AJ, Vojvodic A, Hummelshøj JS et al (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42. https://doi.org/10.1016/j.jcat.2014.12.033

    CAS  Article  Google Scholar 

  45. 45.

    Acerbi N, Tsang SC, Jones G (2013) Rationalization of interactions in precious metal/ceria catalysts using the d-band center model. Angew Chem Int Ed 52:7737–7741. https://doi.org/10.1002/ange.201300130

    CAS  Article  Google Scholar 

  46. 46.

    Gan L, Zhao Y, Huang D et al (2013) First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) all-2D semiconductor/metal contacts. Phys Rev B 87:245307–245313. https://doi.org/10.1103/PhysRevB.87.245307

    CAS  Article  Google Scholar 

  47. 47.

    Chen Z, Huang S, Huang B et al (2020) Transition metal atoms implanted into MXenes (M2CO2) for enhanced electrocatalytic hydrogen evolution reaction. Appl Surf Sci 509:145319. https://doi.org/10.1016/j.apsusc.2020.145319

    CAS  Article  Google Scholar 

  48. 48.

    Hu G, Tang Q, Jiang D (2016) CoP for hydrogen evolution: implications from hydrogen adsorption. Phys Chem Chem Phys 18(34):23864. https://doi.org/10.1039/C6CP04011J

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Tang Q, Jiang DE (2016) Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal 6(8):4953–4961. https://doi.org/10.1021/acscatal.6b01211

    CAS  Article  Google Scholar 

  50. 50.

    Seh ZW, Fredrickson KD, Anasori B et al (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1(3):589–594. https://doi.org/10.1021/acsenergylett.6b00247

    CAS  Article  Google Scholar 

Download references


This work was supported by the Project of Integration Platform of Industry & Education of Higher Vocational Education in Jiangsu Province—Artificial Intelligence & Internet of Things (AIoT) (Higher Vocational Education in Jiangsu Province [2019] No.26), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJD140005), and the National Natural Science Foundation of China (Grant No. 11404322).

Author information



Corresponding author

Correspondence to Hao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, Y., Wang, H. et al. Heterostructures of MXenes and CoNx-Graphene as highly active electrocatalysts for hydrogen evolution reaction in alkaline media. J Appl Electrochem (2021). https://doi.org/10.1007/s10800-021-01542-4

Download citation


  • Hydrogen evolution
  • Heterostructures
  • CoNx-Graphene/MXenes
  • Density functional theory
  • Codoped graphene