A modified reduced graphite oxide anode for sodium ion storage in ether‐based electrolyte


In this work, reduced graphite oxide (rGO) with a long-range-ordered layered structure and an expanded interlayer spacing is synthesized and utilized as an anode for sodium ion storage. Unlike Na+-solvent co-intercalation in flake graphite, the interaction between Na-ions and graphene layers of the rGO shows a capacitive behavior. All the surface defects, pores, and functional groups generated on the surface of rGO can contribute to additional capacity of sodium storage. Thereby, a reversible capacity of 145.7 mAh g−1 at 1 A g−1 and a rate performance of 131.7 mAh g−1 at 1.8 A g−1 could be obtained. Capacity retention of 87.7 % after 900 cycles at 400 mA g−1 was also achieved. Further enhancement in cycling stability, with little capacity decay after 1500 cycles, was obtained after incorporating Ag onto the surface of the rGO. The rGO-Ag anode delivered higher energy density and power density as compared to rGO at the same current density. Even at a power density of 5493 W kg−1 (3A g−1, 24 C), the energy density was as high as 236.2 Wh kg−1. These results contribute to the development of a low-cost, high-performance sodium ion storage devices.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Ding J, Wang H, Li Z et al (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015

    CAS  Article  Google Scholar 

  2. 2.

    Zhu Y, Han X, Xu Y et al (2013) Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 7:6378–6386

    CAS  Article  Google Scholar 

  3. 3.

    David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770

    CAS  Article  Google Scholar 

  4. 4.

    Liu Y, Xu Y, Zhu Y et al (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634

    CAS  Article  Google Scholar 

  5. 5.

    Prabakar SR, Hwang Y-H, Bae EG et al (2013) Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries. Carbon 52:128–136

    Article  Google Scholar 

  6. 6.

    Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    CAS  Article  Google Scholar 

  7. 7.

    Alcantara R, Madrigal FF, Lavela P et al (2000) Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon 38:1031–1041

    CAS  Article  Google Scholar 

  8. 8.

    Johnson BA, White RE (1998) Characterization of commercially available lithium-ion batteries. J Power Sources 70:48–54

    CAS  Article  Google Scholar 

  9. 9.

    Bommier C, Luo W, Gao W -Y et al (2014) Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 76:165–174

    CAS  Article  Google Scholar 

  10. 10.

    Thomas P, Billaud D (2002) Electrochemical insertion of sodium into hard carbons. Electrochim Acta 47:3303–3307

    CAS  Article  Google Scholar 

  11. 11.

    Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118:16–19

    Article  Google Scholar 

  12. 12.

    Zhu Z, Lu G (2004) Comparative study of Li, Na, and K adsorptions on graphite by using ab initio method. Langmuir 20:10751–10755

    CAS  Article  Google Scholar 

  13. 13.

    Cao Y, Xiao L, Sushko ML et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    CAS  Article  Google Scholar 

  14. 14.

    Nobuhara K, Nakayama H, Nose M et al (2013) First-principles study of alkali metal-graphite intercalation compounds. J Power Sources 243:585–587

    CAS  Article  Google Scholar 

  15. 15.

    Alcántara R, Lavela P, Ortiz GF, Tirado JL (2005) Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid-State Lett 8:A222–A225

    Article  Google Scholar 

  16. 16.

    Tanaike O, Inagaki M (1997) Ternary intercalation compounds of carbon materials having a low graphitization degree with alkali metals. Carbon 35:831–836

    CAS  Article  Google Scholar 

  17. 17.

    Kim H, Hong J, Yoon G et al (2015) Sodium intercalation chemistry in graphite. Energy Environ Sci 8:2963–2969

    CAS  Article  Google Scholar 

  18. 18.

    Kim H, Hong J, Park YU et al (2015) Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Func Mater 25:534–541

    CAS  Article  Google Scholar 

  19. 19.

    Inagaki M, Tanaike O (2001) Determining factors for the intercalation into carbon materials from organic solutions. Carbon 39:1083–1090

    CAS  Article  Google Scholar 

  20. 20.

    Yun YS, Park KY, Lee B et al (2015) Sodium-ion storage in pyroprotein‐based carbon nanoplates. Adv Mater 27:6914–6921

    CAS  Article  Google Scholar 

  21. 21.

    Lin Z, Xia Q, Wang W et al (2019) Recent research progresses in ether-and ester-based electrolytes for sodium-ion batteries. InfoMat 1:376–389

    CAS  Article  Google Scholar 

  22. 22.

    Kate P, Goswami AK (2016) Synthesis of graphene oxide via modified Hummer’s approach and its characterization. I-manager’s. J Mater Sci 4:7–11

    Google Scholar 

  23. 23.

    Hummers WS Jr., Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    CAS  Article  Google Scholar 

  24. 24.

    Rahman MM, Wang J-Z, Wexler D et al (2010) Silver-coated TiO2 nanostructured anode materials for lithium ion batteries. J Solid State Electrochem 14:571–578

    CAS  Article  Google Scholar 

  25. 25.

    He B-L, Dong B, Li H-L (2007) Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochem Commun 9:425–430

    CAS  Article  Google Scholar 

  26. 26.

    Naebe M, Wang J, Amini A et al (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4:4375

    Article  Google Scholar 

  27. 27.

    Yang H, Kannappan S, Pandian AS et al (2015) Nanoporous graphene materials by low-temperature vacuum-assisted thermal process for electrochemical energy storage. J Power Sources 284:146–153

    CAS  Article  Google Scholar 

  28. 28.

    Wang Y-X, Chou S-L, Liu H-K, Dou S-X (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208

    CAS  Article  Google Scholar 

  29. 29.

    Dahn J (1991) Phase diagram of Lix C6. Phys Rev B 44:9170

    CAS  Article  Google Scholar 

  30. 30.

    Umeda M, Dokko K, Fujita Y et al (2001) Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon. Electrochim Acta 47:885–890

    CAS  Article  Google Scholar 

  31. 31.

    Gotoh K, Ishikawa T, Shimadzu S et al (2013) NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J Power Sources 225:137–140

    CAS  Article  Google Scholar 

  32. 32.

    Wen Y, He K, Zhu Y et al (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033

    CAS  Article  Google Scholar 

  33. 33.

    Wenzel S, Hara T, Janek J, Adelhelm P (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 4:3342–3345

    CAS  Article  Google Scholar 

  34. 34.

    Lin H, Li X, He X, Zhao J (2015) Application of a novel 3D nano-network structure for Ag-modified TiO2 film electrode with enhanced electrochemical performance. Electrochim Acta 173:242–251

    CAS  Article  Google Scholar 

  35. 35.

    Cao XY, Kim JH, Oh SM (2002) The effects of oxidation on the surface properties of MCMB-6-28. Electrochim Acta 47:4085–4089

    CAS  Article  Google Scholar 

  36. 36.

    Zhang S, Xu K, Jow T (2006) EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim Acta 51:1636–1640

    CAS  Article  Google Scholar 

  37. 37.

    Zhang S, Xu K, Jow T (2004) Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta 49:1057–1061

    CAS  Article  Google Scholar 

  38. 38.

    Zhu Y, Xu Y, Liu Y et al (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–787

    CAS  Article  Google Scholar 

  39. 39.

    Chen T, Liu Y, Pan L et al (2014) Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem A 2:4117–4121

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601301), the National Natural Science Foundation of China (Grant No. 51572247), and the Natural Science Foundation of Shandong Province of China (Grant No. ZR2014EMM003). We also thank Professor Guanglei Cui of Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences for his help in the work of cell assembling.

Author information



Corresponding authors

Correspondence to Xiaoyan Cao or Wei Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Q., Li, L. et al. A modified reduced graphite oxide anode for sodium ion storage in ether‐based electrolyte. J Appl Electrochem (2021). https://doi.org/10.1007/s10800-021-01538-0

Download citation


  • Sodium ion storage
  • Reduced graphite oxide
  • Co‐intercalation
  • Ether‐based electrolyte