Microstructural and segregation effects affecting the corrosion behavior of a high‐temperature Bi‐Ag solder alloy in dilute chloride solution


In electronic devices the solder joint is exposed not only to the air but also to moistures and other corrosive media such as chlorine and sulfur compounds. Bi–Ag alloys meet the melting temperature requirement to be classified as high-temperature solders, therefore, knowledge of corrosion behavior is important for a long-term reliability of Bi–Ag solder connections. However, corrosion studies of Bi–Ag alloys are quite restricted in the literature. In this study, the role of the representative length scale of the microstructure as well as of the effects of Ag segregation on the resulting corrosion behavior of Bi–4 wt% Ag alloy samples are investigated. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy measurements were performed, and an equivalent circuit was also proposed to simulate the electrochemical corrosion behavior. All the used techniques indicated a tendency of better corrosion resistance associated with the sample having coarser microstructure and less Ag content.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Abtew M, Selvaduray G (2000) Lead-free solders in microelectronics. Mater Sci Eng R 27:95–141. https://doi.org/10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  2. 2.

    Lalena JN, Dean NF, Weiser MW (2002) Experimental investigation of Ge-Doped Bi-11Ag as a new Pb-free solder alloy for power die attachment. J Electron Mater 31:1244–1249. https://doi.org/10.1007/s11664-002-0016-8

    CAS  Article  Google Scholar 

  3. 3.

    Zhang H, Minter J, Lee NC (2019) A Brief Review on High-Temperature, Pb-Free Die-Attach Materials. J Electron Mater 48:201–210. https://doi.org/10.1007/s11664-018-6707-6

    CAS  Article  Google Scholar 

  4. 4.

    Yu T, Lu S, Xu W, He G (2018) Fabrication of bismuth superhydrophobic surface on zinc substrate. J Solid State Chem 262:26–37. https://doi.org/10.1016/j.jssc.2018.02.019

    CAS  Article  Google Scholar 

  5. 5.

    Song JM, Chuang HY, Wu ZM (2006) Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates. J Electron Mater 35:1041–1049. https://doi.org/10.1007/BF02692565

    CAS  Article  Google Scholar 

  6. 6.

    Koleňák R, Chachula M (2013) Characteristics and properties of Bi-11Ag solder. Solder Surf Mt Technol 25:68–75. https://doi.org/10.1108/09540911311309022

    CAS  Article  Google Scholar 

  7. 7.

    Kim JH, Jeong SW, Lee HM (2002) Thermodynamics-aided alloy design and evaluation of Pb-free solders for high-temperature applications. Mater Trans 43:1873–1878. https://doi.org/10.2320/matertrans.43.1873

    CAS  Article  Google Scholar 

  8. 8.

    Nahavandi M, Hanim MAA, Ismarrubie ZN et al (2014) Effects of silver and antimony content in lead-free high-temperature solders of Bi-Ag and Bi-Sb on copper substrate. J Electron Mater 43:579–585. https://doi.org/10.1007/s11664-013-2873-8

    CAS  Article  Google Scholar 

  9. 9.

    Song JM, Tsai CH, Fu YP (2010) Electrochemical corrosion behaviour of Bi-11Ag alloy for electronic packaging applications. Corros Sci 52:2519–2524. https://doi.org/10.1016/j.corsci.2010.03.031

    CAS  Article  Google Scholar 

  10. 10.

    Andy C Mackie BiAgX HighTemperature LeadFree Pbfree Solder Paste. https://eepower.com/technical-articles/biagx-high-temperature-lead-free-pb-free-solder-paste/#

  11. 11.

    Zhang H, Lee N-C (2012) A drop-in die attach solution for high temperature lead free BiAgX paste. In: High Temperature Electronics Conference. Albuquerque, NM, USA, pp 58–65

  12. 12.

    Shen Z, Fang K, Hamilton M, et al (2013) Lead-free solder attach for 200°C applications. In: Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT). Oxford, UK, pp 260–267

  13. 13.

    Krastev I, Valkova T, Zielonka A (2004) Structure and properties of electrodeposited silver-bismuth alloys. J Appl Electrochem 34:79–85. https://doi.org/10.1023/B:JACH.0000005606.24413.21

    CAS  Article  Google Scholar 

  14. 14.

    Septimio RS, Arenas MA, Conde A et al (2019) Correlation between microstructure and corrosion behaviour of Bi-Zn solder alloys. Corros Eng Sci Technol 54:362–368. https://doi.org/10.1080/1478422X.2019.1600836

    CAS  Article  Google Scholar 

  15. 15.

    Mogoda AS (2020) Electrochemical behaviour of bismuth in HCl solutions. Bull Mater Sci 43:5–10. https://doi.org/10.1007/s12034-020-2062-3

    CAS  Article  Google Scholar 

  16. 16.

    Šuryová D, Kostolný I, Koleňák R (2020) Fluxless ultrasonic soldering of SiC ceramics and Cu by Bi-Ag-Ti based solder. AIMS Mater Sci 7:24–32. https://doi.org/10.3934/matersci.2020.1.24

    CAS  Article  Google Scholar 

  17. 17.

    Olesińska W, Pawłowska M, Kaliński D, Chmielewski M (2004) Reactive metallic layers produced on AIN, Si3N4 and SiC ceramics. J Mater Sci Mater Electron 15:813–817

    Article  Google Scholar 

  18. 18.

    Luo H, Reigosa PD, Iannuzzo F, Blaabjerg F (2018) On-line solder layer degradation measurement for SiC-MOSFET modules under accelerated power cycling condition. Microelectron Reliab 88–90:563–567. https://doi.org/10.1016/j.microrel.2018.07.128

    CAS  Article  Google Scholar 

  19. 19.

    Zhang H, Lee N-C (2015) Mixed alloy solder paste. 2

  20. 20.

    Silva BL, Bertelli F, Canté MV et al (2016) Solder/substrate interfacial thermal conductance and wetting angles of Bi–Ag solder alloys. J Mater Sci Mater Electron 27:1994–2003. https://doi.org/10.1007/s10854-015-3983-2

    CAS  Article  Google Scholar 

  21. 21.

    Phase Diagrams & Computational Thermodynamics. https://www.metallurgy.nist.gov/phase/solder/agbi.html

  22. 22.

    Spinelli JE, Silva BL, Cheung N, Garcia A (2014) The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi-Ag solder alloys. Mater Charact 96:115–125. https://doi.org/10.1016/j.matchar.2014.07.023

    CAS  Article  Google Scholar 

  23. 23.

    Gündüz M, Çadirli E (2002) Directional solidification of aluminium-copper alloys. Mater Sci Eng A 327:167–185. https://doi.org/10.1016/S0921-5093(01)01649-5

    Article  Google Scholar 

  24. 24.

    Jellesen MS, Verdingovas V, Conseil H, et al (2014) Corrosion in electronics : Overview of failures and countermeasures. Proc Eur Corros Congr EUROCORR 2014, 8–12 Sept 2014, Pisa, Italy, Pap No 7426 1–10

  25. 25.

    Satizabal LM, Poloni E, Bortolozo AD, Osório WR (2016) Immersion corrosion of Sn-Ag and Sn-Bi alloys as successors to Sn-Pb alloy with electronic and jewelry applications. Corrosion 72:1064–1080. https://doi.org/10.5006/2039

    CAS  Article  Google Scholar 

  26. 26.

    Ventura T, Terzi S, Rappaz M, Dahle AK (2011) Effects of solidification kinetics on microstructure formation in binary Sn-Cu solder alloys. Acta Mater 59:1651–1658. https://doi.org/10.1016/j.actamat.2010.11.032

    CAS  Article  Google Scholar 

  27. 27.

    Felberbaum M, Ventura T, Rappaz M, Dahle AK (2011) Microstructure formation in Sn-Cu-Ni solder alloys. Jom 63:52–55. https://doi.org/10.1007/s11837-011-0175-2

    CAS  Article  Google Scholar 

  28. 28.

    Song JM, Chuang HY (2009) Faceting behavior of primary Ag in Bi-Ag Alloys for high temperature soldering applications. Mater Trans 50:1902–1904. https://doi.org/10.2320/matertrans.M2009089

    CAS  Article  Google Scholar 

  29. 29.

    Spinelli JE, Silva BL, Garcia A (2014) Microstructure, phases morphologies and hardness of a Bi-Ag eutectic alloy for high temperature soldering applications. Mater Des 58:482–490. https://doi.org/10.1016/j.matdes.2014.02.026

    CAS  Article  Google Scholar 

  30. 30.

    Huerta EO (2012) Corrosión y degradación de materiales, 2a. Editorial Síntesis, S. A, Madrid

    Google Scholar 

  31. 31.

    Cocks FH Introduction to corrosion. ASTM Spec Tech Publ 3–41. https://doi.org/https://doi.org/10.1016/b978-1-933762-30-2.50007-0

  32. 32.

    Esmailzadeh S, Aliofkhazraei M, Sarlak H (2018) Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Prot Met Phys Chem Surf 54:976–989. https://doi.org/10.1134/S207020511805026X

    CAS  Article  Google Scholar 

  33. 33.

    Perez N (2004) Electrochemistry and corrosion science. Kluwer Academic Publishers, Boston

    Google Scholar 

  34. 34.

    Ohtsuka T, Nishikata A, Sakairi M, Fushimi K (2015) Springer briefs in molecular science electrochemistry for corrosion fundamentals

  35. 35.

    Obeyesekere NU (2017) Pitting corrosion. Elsevier, Amsterdam

    Google Scholar 

  36. 36.

    Popov BN (2015) Passivity. In: Corrosion engineering, pp 143–179

  37. 37.

    Lameche S, Nedjar R, Rebbah H, Adjeb A (2008) Corrosion and passivation behaviour of three stainless steels in differents chloride concentrations. Asian J Chem 20:2545–2550

    CAS  Google Scholar 

  38. 38.

    Vanýsek P (2012) Electrochemical series. In: Haynes WM (ed) Handbook of chemistry and physics, 93rd edn. Chemical Rubber Company, Boca Raton, pp 5–80

    Google Scholar 

  39. 39.

    Vida TA, Soares T, Septimio RS et al (2019) Effects of macrosegregation and microstructure on the corrosion resistance and hardness of a directionally solidified Zn-5.0wt.%Mg alloy. Mater Res 22:1–13. https://doi.org/10.1590/1980-5373-MR-2019-0009

    Article  Google Scholar 

  40. 40.

    Osório WR, Peixoto LC, Garcia A (2015) Electrochemical and mechanical behavior of lead-silver and lead-bismuth casting alloys for lead-acid battery components. Metall Mater Trans A 46:4255–4267. https://doi.org/10.1007/s11661-015-3023-0

    CAS  Article  Google Scholar 

  41. 41.

    Yasuda Y, Abe H, Matsubayashi R et al (2019) Corrosion behavior of lead-free copper alloy castings and their crystallized substances of Cu2S and Bi. Journal Japan Inst Met 83:15–22. https://doi.org/10.2320/jinstmet.J2018034

    CAS  Article  Google Scholar 

  42. 42.

    Ekilik VV, Korsakova EA, Berezhnaya AG, Momotova EI (2013) Anodic behavior of bismuth in chloride solution. Prot Met Phys Chem Surf 49:826–829. https://doi.org/10.1134/S207020511307006X

    CAS  Article  Google Scholar 

  43. 43.

    Liu JC, Zhang G, Wang ZH, et al (2015) Electrochemical behavior of Sn-xZn lead-free solders in aerated NaCl solution. In: 16th Int Conf Electron Packag Technol ICEPT 2015 68–73. https://doi.org/https://doi.org/10.1109/ICEPT.2015.7236547

  44. 44.

    Liu JC, Park SW, Nagao S et al (2015) The role of Zn precipitates and Cl- anions in pitting corrosion of Sn-Zn solder alloys. Corros Sci 92:263–271. https://doi.org/10.1016/j.corsci.2014.12.014

    CAS  Article  Google Scholar 

  45. 45.

    Mansfeld F (1990) Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochim Acta 35:1533–1544. https://doi.org/10.1016/0013-4686(90)80007-B

    CAS  Article  Google Scholar 

  46. 46.

    Liu C (2003) Part I. Establishment of equivalen circuits for EIS data modelling. 45:1243–1256

  47. 47.

    Shi J, Wang D, Ming J, Sun W (2018) Passivation and pitting corrosion behavior of a novel alloy steel (00Cr10MoV) in simulated concrete pore solution. J Mater Civ Eng 30:1–12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002455

    Article  Google Scholar 

  48. 48.

    Gudić S, Smoljko I, Klikić M (2010) The effect of small addition of tin and indium on the corrosion behavior of aluminium in chloride solution. J Alloys Compd 505:54–63. https://doi.org/10.1016/j.jallcom.2010.06.055

    CAS  Article  Google Scholar 

  49. 49.

    Li B, Huan Y, Zhang W (2017) Passivation and corrosion behavior of P355 carbon steel in simulated concrete pore solution at pH 12.5 to 14. Int J Electrochem Sci 12:10402–10420. https://doi.org/https://doi.org/10.20964/2017.11.51

  50. 50.

    Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, Hoboken

    Google Scholar 

Download references


The authors are grateful to CNPq—National Council for Scientific and Technological Development, Brazil (Grants: 301600/2015-5 and 408576/2016-2) and FAPESP—São Paulo Research Foundation (Grants: 2017/15158-0, 2017/12741-6 and 2019/23673-7) for their financial support.

Author information



Corresponding author

Correspondence to Rudimylla Septimio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Septimio, R., Cruz, C., Silva, B. et al. Microstructural and segregation effects affecting the corrosion behavior of a high‐temperature Bi‐Ag solder alloy in dilute chloride solution. J Appl Electrochem (2021). https://doi.org/10.1007/s10800-021-01533-5

Download citation


  • Solders
  • Bi–Ag alloy
  • Microstructure
  • Corrosion resistance