Enhanced electrochemical activity and stability of LSCF cathodes by Mo doping for intermediate temperature solid oxide fuel cells


La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), La0.6Sr0.4Co0.2Fe0.78Mo0.02O3−δ (LSCFM02), La0.6Sr0.4Co0.2Fe0.75Mo0.05O3−δ (LSCFM05) cathodes were prepared and their electrochemical performance and stability were investigated. Mo doping into LSCF, which is confirmed by X-ray diffraction (XRD) and Rietveld refinement, increases unit cell parameters from 3.893 to 3.924 Å, causing expansion of unit cell volume. Polarization resistance (Rp) value of LSCFM05 cathodes is less that of LSCF cathodes at 750 °C, indicating that Mo-doped LSCF exhibits enhanced electrochemical performance. X-ray photoelectron spectroscopy (XPS) analysis shows that high electrocatalytic activity for oxygen reduction reaction of Mo-doped LSCF cathodes is related to mixed-valent Mo5+/Mo6+. LSCFM05 cathodes have less degradation rate during 20 h testing at 700 °C in air compared to LSCF cathodes. XPS results show that Mo doping reduces Sr surface segregation and is responsible for the stability enhancement of LSCF cathodes.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Wang S, Jiang SP (2017) Prospects of fuel cell technologies. Natl Sci Rev 4(2):163–166

    CAS  Article  Google Scholar 

  2. 2.

    Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energ Rev 6(5):433–455

    CAS  Article  Google Scholar 

  3. 3.

    Steele BCH (2001) Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J Mater Sci 36(5):1053–1068

    CAS  Article  Google Scholar 

  4. 4.

    Yokokawa H, Tu H, Iwanschitz B, Mai A (2008) Fundamental mechanisms limiting solid oxide fuel cell durability. J Power Sources 182(2):400–412

    CAS  Article  Google Scholar 

  5. 5.

    Brett DJ, Atkinson A, Brandon NP, Skinner SJ (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37(8):1568–1578

    CAS  Article  Google Scholar 

  6. 6.

    Cao Y, Gadre MJ, Ngo AT, Adler SB, Morgan DD (2019) Factors controlling surface oxygen exchange in oxides. Nat Commun 10(1):1346

    Article  Google Scholar 

  7. 7.

    Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sust Energ Rev 82:353–368

    CAS  Article  Google Scholar 

  8. 8.

    Chen Y, Zhang L, Wang C, Cai H, Wang L, Song Z (2018) Performance of La0.5Sr0.5Fe0.9Mo0.1O3−δ–Sm0.2Ce0.8O2−δ composite cathode for CeO2- and LaGaO3-based solid oxide fuel cells. Ionics 24(9):2717–2728

    CAS  Article  Google Scholar 

  9. 9.

    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics 76:259–271

    CAS  Article  Google Scholar 

  10. 10.

    Jiang SP (2002) A comparison of O2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics 146(1–2):1–22

    CAS  Article  Google Scholar 

  11. 11.

    Giuliano A, Carpanese MP, Clematis D, Boaro M, Pappacena A, Deganello F, Liotta LF, Barbucci A (2017) Infiltration, overpotential and ageing effects on cathodes for solid oxide fuel cells: La0.6Sr0.4Co0.2Fe0.8O3-δ versus Ba0.5Sr0.5Co0.8Fe0.2O3-δ. J Electrochem Soc 164(10):F3114–F3122

    CAS  Article  Google Scholar 

  12. 12.

    Song YH, Rehman SU, Kim HS, Song HS, Song RH, Lim TH, Hong JE, Park SJ, Huh JY, Lee SB (2020) Facile surface modification of LSCF/GDC cathodes by epitaxial deposition of Sm0.5Sr0.5CoO3 via ultrasonic spray infiltration. J Mater Chem A 8(7):3967–3977

    CAS  Article  Google Scholar 

  13. 13.

    Simner SP, Anderson MD, Engelhard MH, Stevenson JW (2006) Degradation mechanisms of La-Sr-Co-Fe-O3 SOFC cathodes. Electrochem Solid State Lett 9(10):A478–A481

    CAS  Article  Google Scholar 

  14. 14.

    Chen K, Li N, Ai N, Cheng Y, Rickard WD, Jiang SP (2016) Polarization-Induced interface and Sr segregation of in situ assembled La0.6Sr0.4Co0.2Fe0.8O3-δ electrodes on Y2O3-ZrO2 electrolyte of solid oxide fuel cells. ACS Appl Mater Interfaces 8(46):31729–31737

    CAS  Article  Google Scholar 

  15. 15.

    Lu Z, Darvish S, Hardy J, Templeton J, Stevenson J, Zhong Y (2017) SrZrO3 formation at the interlayer/electrolyte interface during (La1-xSrx)1-δCo1-yFeyO3 cathode sintering. J Electrochem Soc 164(10):F3097–F3103

    CAS  Article  Google Scholar 

  16. 16.

    Liu Y, Zhao X, Yang Z, Wang Z, Chen X, Yang S, Wei M (2019) New insights into element migration on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of intermediate temperature solid oxide fuel cells. Solid State Ionics 334:145–151

    CAS  Article  Google Scholar 

  17. 17.

    Wang GY, Zhang YL, Han MF (2020) Densification of Ce0.9Gd0.1O2-δinterlayer to improve the stability of La0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.9Gd0.1O2-δ interface and SOFC. J Electroanal Chem 857:113591

    CAS  Article  Google Scholar 

  18. 18.

    Chen K, He S, Li N, Cheng Y, Ai N, Chen M, Rickard WDA, Zhang T, Jiang SP (2018) Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells. J Power Sources 378:433–442

    CAS  Article  Google Scholar 

  19. 19.

    Yoo S, Kim J, Song SY, Lee DW, Shin J, Ok KM, Kim G (2014) Structural, electrical and electrochemical characteristics of La0.1Sr0.9Co1−xNbxO3−δ as a cathode material for intermediate temperature solid oxide fuel cells. RSC Adv 4(36):18710–18717

    CAS  Article  Google Scholar 

  20. 20.

    Wang J, Yang T, Lei L, Huang K (2017) Ta-Doped SrCoO3−δ as a promising bifunctional oxygen electrode for reversible solid oxide fuel cells: a focused study on stability. J Mater Chem A 5(19):8989–9002

    CAS  Article  Google Scholar 

  21. 21.

    He W, Wu X, Yang G, Shi H, Dong F, Ni M (2017) BaCo0.7Fe0.22Y0.08O3−δ as an active oxygen reduction electrocatalyst for low-temperature solid oxide fuel cells below 600 °C. ACS Energy Lett 2(2):301–305

    CAS  Article  Google Scholar 

  22. 22.

    Meffert M, Müller P, Störmer H, Unger LS, Niedrig C, Wagner SF, Saher S, Bouwmeester H, Ivers-Tiffée E, Gerthsen D (2014) Effect of yttrium (Y) and zirconium (Zr) doping on the thermodynamical stability of the cubic Ba0.5Sr0.5Co0.8Fe0.2O3-δ phase. Microsc Microanal 20(S3):466–467

    Article  Google Scholar 

  23. 23.

    Zhou F, Liu Y, Zhao X, Tang W, Yang S, Zhong S, Wei M (2018) Effects of cerium doping on the performance of LSCF cathodes for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 43(41):18946–18954

    CAS  Article  Google Scholar 

  24. 24.

    Park BK, Barnett SA (2020) Boosting solid oxide fuel cell performanceviaelectrolyte thickness reduction and cathode infiltration. J Mater Chem A 8(23):11626–11631

    CAS  Article  Google Scholar 

  25. 25.

    Niu B, Jin F, Zhang L, Shen P, He T (2018) Performance of double perovskite symmetrical electrode materials Sr2TiFe1–xMoxO6–δ ( x = 0.1, 0.2) for solid oxide fuel cells. Electrochim Acta 263:217–227

    CAS  Article  Google Scholar 

  26. 26.

    Zhang P, Guan G, Khaerudini DS, Hao X, Xue C, Han M, Kasai Y, Abudula A (2015) B-site Mo-doped perovskite Pr0.4Sr0.6(Co0.2Fe0.8)1−xMoxO3−σ ( x = 0, 0.05, 0.1 and 0.2) as electrode for symmetrical solid oxide fuel cell. J Power Sources 276:347–356

    CAS  Article  Google Scholar 

  27. 27.

    Xiao G, Liu Q, Wang S, Komvokis VG, Amiridis MD, Heyden A, Ma S, Chen F (2012) Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells. J Power Sources 202:63–69

    CAS  Article  Google Scholar 

  28. 28.

    Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104(10):4791–4843

    CAS  Article  Google Scholar 

  29. 29.

    Liu B, Zhang Y, Zhang L (2008) Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ–La0.9Sr0.1Ga0.8Mg0.2O3−δ composite cathode for solid oxide fuel cell. J Power Sources 175(1):189–195

    CAS  Article  Google Scholar 

  30. 30.

    Serra JM, Buchkremer HP (2007) On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes. J Power Sources 172(2):768–774

    CAS  Article  Google Scholar 

  31. 31.

    Chen J, Liang FL, Chi B, Pu J, Jiang SP, Li J (2009) Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3-δ cathodes of solid oxide fuel cells. J Power Sources 194(1):275–280

    CAS  Article  Google Scholar 

  32. 32.

    Kumar P, Presto S, Sinha ASK, Varma S, Viviani M, Singh P (2017) Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC. J Alloy Compd 725:1123–1129

    CAS  Article  Google Scholar 

  33. 33.

    Zhen SY, Sun W, Tang GZ, Rooney D, Sun KN, Ma XX (2016) Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. Int J Hydrog Energy 41(22):9538–9546

    CAS  Article  Google Scholar 

  34. 34.

    Liu Y, Chen K, Zhao L, Chi B, Pu J, Jiang SP, Jian L (2014) Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes under solid oxide fuel cells operation conditions. Int J Hydrog Energy 39(28):15868–15876

    CAS  Article  Google Scholar 

  35. 35.

    van der Heide PAW (2002) Systematic x-ray photoelectron spectroscopic study of La1-xSrx-based perovskite-type oxides. Surf Interface Anal 33(5):414–425

    Article  Google Scholar 

  36. 36.

    Chen K, Hyodo J, Ai N, Ishihara T, Jiang SP (2016) Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions. Int J Hydrog Energy 41(3):1419–1431

    CAS  Article  Google Scholar 

Download references


The project was supported by Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University (2019GXYSOF11), Hubei Superior and Distinctive Discipline Group of “Mechatronics and Automobiles” (XKQ2019060) and the 111 Project (B17034). XRD, SEM and TG examinations were assisted by the Center of Material Research and Analysis of Wuhan University of Technology.

Author information



Corresponding authors

Correspondence to Yihui Liu or Xiyong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, F., Chen, X. et al. Enhanced electrochemical activity and stability of LSCF cathodes by Mo doping for intermediate temperature solid oxide fuel cells. J Appl Electrochem 51, 425–433 (2021). https://doi.org/10.1007/s10800-020-01515-z

Download citation


  • LSCF cathode
  • Electrochemical performance and stability
  • Mo doping
  • Electrocatalytic activity
  • Polarization resistance