Skip to main content
Log in

Cu–Sn–Zn nanocomposite coatings prepared by TiO2 sol-enhanced electrodeposition

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cu–Sn–Zn (CSZ) coatings are widely applied in communication devices due to their excellent performance in electrical/thermal conductivity, solderability, and corrosion resistance. Particularly, a novel TiO2–sol-enhanced electrodeposition method has been proposed to prepare CSZ–TiO2 nanocomposite coatings with different volume fractions of TiO2–sol. A series of CSZ–TiO2 nanocomposite coatings were prepared in the current study. The crystal phase, surface morphology, and micro- to nanostructures of sol-enhanced nanocomposite coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Based on the prior research, we studied the microhardness, surface friction behavior, and corrosion behavior of the coatings. Our results indicate that adding 12.5 mL L−1 TiO2–sol increased the average microhardness of CSZ coating from 325 to 421 HV and reduced the corrosion rate by 42.8%. Those results reveal that the TiO2–sol affected the performance of CSZ coatings depends on the volume added. Additionally, we investigated the effects of TiO2–sol volume fraction on the morphology, microhardness, dry sliding wear-resistant capability, and corrosion-resistant capability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Y, Ju Y, Wei S, Gao W, Lu W, Yan B (2014) Au-Ni-TiO2 nano-composite coatings prepared by sol-enhanced method. J Electrochem Soc 161(14):775–781. https://doi.org/10.1149/2.0331414jes

    Article  CAS  Google Scholar 

  2. Wang Y, Cheng G, Tay SL, Guo Y, Sun X, Gao W (2017) Effects of Bi addition on the microstructure and mechanical properties of nanocrystalline Ag coatings. Materials 10(8):1–16. https://doi.org/10.3390/ma10080932

    Article  CAS  Google Scholar 

  3. Chen W, He Y, Gao W (2010) Synthesis of nanostructured Ni–TiO2 composite coatings by sol-enhanced electroplating. J Electrochem Soc 157(8):122–128. https://doi.org/10.1149/1.3442366

    Article  CAS  Google Scholar 

  4. Kerr C, Barker D, Walsh F, Archer J (2000) The electrodeposition of composite coatings based on metal matrix-included particle deposits. Trans IMF 78(5):171–178. https://doi.org/10.1080/00202967.2000.11871333

    Article  CAS  Google Scholar 

  5. Walsh FC, Ponce de Leon C (2014) A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans IMF 92(2):83–98. https://doi.org/10.1179/0020296713Z.000000000161

    Article  CAS  Google Scholar 

  6. Armstrong RW (2014) 60 Years of Hall-Petch: past to present nano-scale connections. Mater Trans JIM 55(1):2–12. https://doi.org/10.2320/matertrans.MA201302

    Article  CAS  Google Scholar 

  7. Orowan E (1948) Discussion on internal stress. Paper presented at the The Symposium on Internal Stresses in Metals and Alloys, London

  8. Ashby M (1969) On the orowan stress. In: Argon AS (ed) Physics of strength and plasticity. M.I.T. Press, Cambridge

    Google Scholar 

  9. Hiratani M, Zbib HM, Khaleel MA (2003) Modeling of thermally activated dislocation glide and plastic flow through local obstacles. Int J Plast 19(9):1271–1296. https://doi.org/10.1016/S0749-6419(02)00016-5

    Article  Google Scholar 

  10. Askari H, Zbib HM, Sun X (2012) Multiscale modeling of inclusions and precipitation hardening in metal matrix composites: application to advanced high-strength steels. J Nanomech Micromech 3(2):24–33. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000052

    Article  Google Scholar 

  11. Doherty R, Hughes D, Humphreys F, Jonas J, Jensen DJ, Kassner M, King W, McNelley T, McQueen H, Rollett A (1997) Current issues in recrystallization: a review. Mater Sci Eng A 238(2):219–274. https://doi.org/10.1016/S0921-5093(97)00424-3

    Article  Google Scholar 

  12. Moelans N, Blanpain B, Wollants P (2006) Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles. Acta Mater 54(4):1175–1184. https://doi.org/10.1016/j.actamat.2005.10.045

    Article  CAS  Google Scholar 

  13. Hu X, Jain M, Wu P, Wilkinson DS, Mishra RK (2010) A Macro–micro-multi-level modeling scheme to study the effect of particle distribution on wrap-bendability of AA5754 sheet alloys. J Mater Process Technol 210(9):1232–1242. https://doi.org/10.1016/j.jmatprotec.2010.03.010

    Article  CAS  Google Scholar 

  14. Zhang S, Jiang W, Tonks MR (2020) A new phase field fracture model for brittle materials that accounts for elastic anisotropy. Comput Method Appl M 358:112643. https://doi.org/10.1016/j.cma.2019.112643

    Article  Google Scholar 

  15. Low CTJ, Wills RGA, Walsh FC (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201(1):371–383. https://doi.org/10.1016/j.surfcoat.2005.11.123

    Article  CAS  Google Scholar 

  16. Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization-a review. Sci Tech Adv Mater 9(4):1–11. https://doi.org/10.1088/1468-6996/9/4/043001

    Article  CAS  Google Scholar 

  17. Chen W, He Y, Gao W (2010) Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings. Surf Coat Technol 204(15):2487–2492. https://doi.org/10.1016/j.surfcoat.2010.01.036

    Article  CAS  Google Scholar 

  18. Chen W, Gao W (2010) Sol-enhanced electroplating of nanostructured Ni–TiO2 composite coatings—the effects of sol concentration on the mechanical and corrosion properties. Electrochim Acta 55(22):6865–6871. https://doi.org/10.1016/j.electacta.2010.05.079

    Article  CAS  Google Scholar 

  19. Wang Y, Wang S-J, Shu X, Gao W, Lu W, Yan B (2014) Preparation and property of sol-enhanced Ni–B–TiO2 nano-composite coatings. J Alloys Compd 617:472–478. https://doi.org/10.1016/j.jallcom.2014.08.060

    Article  CAS  Google Scholar 

  20. Shu X, Wang Y, Liu C, Gao W (2015) Microstructure and properties of Ni–B–TiO2 nano-composite coatings fabricated by electroless plating. Mater Technol 30(sup1):41–45. https://doi.org/10.1179/1753555714Y.0000000190

    Article  CAS  Google Scholar 

  21. Wang Y, Tay SL, Wei S, Xiong C, Gao W, Shakoor R, Kahraman R (2015) Microstructure and properties of sol-enhanced Ni-Co-TiO2 nano-composite coatings on mild steel. J Alloys Compd 649:222–228. https://doi.org/10.1016/j.jallcom.2015.07.147

    Article  CAS  Google Scholar 

  22. Cheng G, Sun X, Wang Y, Tay SL, Gao W (2017) Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties. Surf Coat Technol 310:43–50. https://doi.org/10.1016/j.surfcoat.2016.12.056

    Article  CAS  Google Scholar 

  23. Wang Y, Cao D, Gao W, Qiao Y, Jin Y, Cheng G, Gao W, Zhi Z (2019) Microstructure and properties of sol-enhanced Co-P-TiO2 nano-composite coatings. J Alloys Compd 792:617–625. https://doi.org/10.1016/j.jallcom.2019.04.047

    Article  CAS  Google Scholar 

  24. He Z, Cao D, Qiao Y, Hayat MD, Singh H, Wang Y (2019) Cobalt–phosphorus–titanium oxide nanocomposite coatings: structures, properties, and corrosions studies. J Mater Sci Mater Electron 30(22):19940–19947. https://doi.org/10.1007/s10854-019-02360-3

    Article  CAS  Google Scholar 

  25. Ju H, Wang R, Ding N, Yu L, Xu J, Ahmed F, Zuo B, Geng Y (2020) Improvement on the oxidation resistance and tribological properties of molybdenum disulfide film by doping nitrogen. Mater Des 186:108300. https://doi.org/10.1016/j.matdes.2019.108300

    Article  CAS  Google Scholar 

  26. Ju H, Ding N, Xu J, Yu L, Geng Y, Ahmed F, Zuo B, Shao L (2019) The influence of crystal structure and the enhancement of mechanical and frictional properties of titanium nitride film by addition of ruthenium. Appl Surf Sci 489:247–254. https://doi.org/10.1016/j.apsusc.2019.05.251

    Article  CAS  Google Scholar 

  27. He X-K, Chen B-Z, Hu G-S, Deng L-F, Zhou N-B, Tian W-Z (2006) Process of electroless plating Cu-Sn-Zn ternary alloy. Trans Nonferrous Met Soc China 16(1):223–228. https://doi.org/10.1016/S1003-6326(06)60039-3

    Article  CAS  Google Scholar 

  28. Beattie S, Dahn J (2005) Combinatorial electrodeposition of ternary Cu–Sn–Zn alloys. J Electrochem Soc 152(8):542–548. https://doi.org/10.1149/1.1939211

    Article  CAS  Google Scholar 

  29. Hur J-Y, Lee H-N, Lee H-K (2010) A study of optimization of electrodeposited CuSnZn alloys electrolyte and process. J Kor Inst Surf Eng 43(2):64–72. https://doi.org/10.5695/JKISE.2010.43.2.064

    Article  CAS  Google Scholar 

  30. Alex S, Chattopadhyay K, Basu B (2016) Tailored specular reflectance properties of bulk Cu based novel intermetallic alloys. Sol Energy Mater Sol Cells 149:66–74. https://doi.org/10.1016/j.solmat.2016.01.002

    Article  CAS  Google Scholar 

  31. Capel H, Shipway P, Harris S (2003) Sliding wear behaviour of electrodeposited cobalt–tungsten and cobalt–tungsten–iron alloys. Wear 255(7):917–923. https://doi.org/10.1016/S0043-1648(03)00241-2

    Article  CAS  Google Scholar 

  32. Gao W, Cao D, Jin Y, Zhou X, Cheng G, Wang Y (2018) Microstructure and properties of Cu-Sn-Zn-TiO2 nano-composite coatings on mild steel. Surf Coat Technol 350:801–806. https://doi.org/10.1016/j.surfcoat.2018.04.046

    Article  CAS  Google Scholar 

  33. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  34. Cheng G, Choi KS, Hu X, Sun X (2016) Determining Individual Phase Properties in a Multi-phase Q&P Steel Using Multi-scale Indentation Tests. Mater Sci Eng A 652:384–395. https://doi.org/10.1016/j.msea.2015.11.072

    Article  CAS  Google Scholar 

  35. Gopal M, Chan WM, De Jonghe L (1997) Room temperature synthesis of crystalline metal oxides. J Mater Sci 32(22):6001–6008. https://doi.org/10.1023/A:1018671212890

    Article  CAS  Google Scholar 

  36. Tang Z, Zhang J, Cheng Z, Zhang Z (2003) Synthesis of nanosized rutile TiO2 powder at low temperature. Mater Chem Phys 77(2):314–317. https://doi.org/10.1016/S0254-0584(02)00003-2

    Article  CAS  Google Scholar 

  37. De Vreese P, Skoczylas A, Matthijs E, Fransaer J, Binnemans K (2013) Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochim Acta 108:788–794. https://doi.org/10.1016/j.electacta.2013.06.140

    Article  CAS  Google Scholar 

  38. Tuan NT, Park J, Lee J, Gwak J, Lee D (2014) Synthesis of nanoporous Cu films by dealloying of electrochemically deposited Cu–Zn alloy films. Corros Sci 80:7–11. https://doi.org/10.1016/j.corsci.2013.11.043

    Article  CAS  Google Scholar 

  39. Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L (2007) Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim Acta 52(27):7760–7769. https://doi.org/10.1016/j.electacta.2006.12.053

    Article  CAS  Google Scholar 

  40. Chen L, Wang L, Zeng Z, Xu T (2006) Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni–Al2O3 composite coatings. Surf Coat Technol 201(3):599–605. https://doi.org/10.1016/j.surfcoat.2005.12.008

    Article  CAS  Google Scholar 

  41. Palaniappa M, Seshadri S (2008) Friction and wear behavior of electroless Ni–P and Ni–W–P alloy coatings. Wear 265(5):735–740. https://doi.org/10.1016/j.wear.2008.01.002

    Article  CAS  Google Scholar 

  42. Wang Y, Wang H (2004) Wear resistance of laser clad Ti2Ni3Si reinforced intermetallic composite coatings on titanium alloy. Appl Surf Sci 229(1):81–86. https://doi.org/10.1016/j.apsusc.2004.01.045

    Article  CAS  Google Scholar 

  43. Srivastava M, William Grips VK, Jain A, Rajam KS (2007) Influence of SiC particle size on the structure and tribological properties of Ni–Co composites. Surf Coat Technol 202(2):310–318. https://doi.org/10.1016/j.surfcoat.2007.05.078

    Article  CAS  Google Scholar 

  44. Archard J (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  45. Archard J, Hirst W (1956) The wear of metals under unlubricated conditions. Proc R Soc Lond A 236(1206):397–410. https://doi.org/10.1098/rspa.1956.0144

    Article  Google Scholar 

  46. Wang Y, Tay SL, Wei S, Xiong C, Gao W, Shakoor RA, Kahraman R (2015) Microstructure and properties of sol-enhanced Ni-Co-TiO2 nano-composite coatings on mild steel. J Alloy Compd 649:222–228. https://doi.org/10.1016/j.jallcom.2015.07.147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (51601073, 51905026, and 51701087), the Fundamental Research Funds for the Central Universities (buctrc201827), the Research Project of Jiangsu provincial Six Talent Peaks (2018XCL-028) and Jiangsu Distinguished Professor Project (1064901601). The authors also appreciate the help from Mr. Lin Zhang (Jinshi Electroplating Ltd.), Mr. Haixin Zhu (Jinshi Electroplating Ltd.), and Mr. Chris Goode (Cirrus Materials Science Ltd.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gao, W., He, Z. et al. Cu–Sn–Zn nanocomposite coatings prepared by TiO2 sol-enhanced electrodeposition. J Appl Electrochem 50, 875–885 (2020). https://doi.org/10.1007/s10800-020-01442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01442-z

Keywords

Navigation