A novel H2O2-persulfate hybrid system supported by electrochemically induced acidic and alkaline conditions for organic pollutant removal

Abstract

Electro-Fenton (EF) and alkaline/persulfate systems are two important systems capable of producing ·OH and SO4· for environmental remediation. However, the major drawbacks of these two processes are the necessity of operating in low pH (2.0–4.0) or high pH environments, where the acidification/alkalization steps and subsequent neutralization processes significantly increase the operation cost and limit their applicability. In this work, we propose a system that can simultaneously electrochemically develop acidic and alkaline environments in two divided compartments to solve this problem. pH values of 2.9–3.2 and 10.9–11.9 in two separated compartments were obtained, and the results show that the electrochemically developed acidic environment (pH of 3 and 4) enhances the EF process by facilitating H2O2 electrogeneration and Fe2+ regeneration. The alkaline environment (11 and 12) that was also developed electrochemically is effective for persulfate activation. Finally, the system was found to be effective for Rhodamine B removal using an acidic pH-enhanced EF process and an alkaline pH-supported persulfate process.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Brillas E, Mur E, Casado J (1996) Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J Electrochem Soc 143:L49–L53. https://doi.org/10.1149/1.1836528

    CAS  Article  Google Scholar 

  2. 2.

    Sirés I, Brillas E, Oturan M, Rodrigo M, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367. https://doi.org/10.1007/s11356-014-2783-1

    CAS  Article  Google Scholar 

  3. 3.

    Zhou W, Gao J, Ding Y, Zhao H, Meng X, Wang Y, Kou K, Xu Y, Wu S, Qin Y (2018) Drastic enhancement of H2O2 electro-generation by pulsed current for ibuprofen degradation: strategy based on decoupling study on H2O2 decomposition pathways. Chem Eng J 338:709–718. https://doi.org/10.1016/j.cej.2017.12.152

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Zhou W, Gao J, Kou K, Meng X, Wang Y, Ding Y, Xu Y, Zhao H, Wu S, Qin Y (2018) Highly efficient H2O2 electrogeneration from O2 reduction by pulsed current: facilitated release of H2O2 from porous cathode to bulk. J Taiwan Inst Chem Eng 83:59–63. https://doi.org/10.1016/j.jtice.2017.10.041

    CAS  Article  Google Scholar 

  5. 5.

    Qiang Z, Chang J, Huang C (2002) Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res 36:85–94. https://doi.org/10.1016/S0043-1354(01)00235-4

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Qiang Z, Chang J, Huang C (2003) Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Res 37:1308–1319. https://doi.org/10.1016/S0043-1354(02)00461-X

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Wang A, Qu J, Ru J, Liu H, Ge J (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigm 65:227–233. https://doi.org/10.1016/j.dyepig.2004.07.019

    CAS  Article  Google Scholar 

  8. 8.

    Zhou W, Ding Y, Gao J, Kou K, Wang Y, Meng X, Wu S, Qin Y (2018) Green electrochemical modification of RVC foam electrode and improved H2O2 electrogeneration by applying pulsed current for pollutant removal. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0810-8

    Article  Google Scholar 

  9. 9.

    Ren G, Zhou M, Liu M, Ma L, Yang H (2016) A novel vertical-flow electro-Fenton reactor for organic wastewater treatment. Chem Eng J 298:55–67. https://doi.org/10.1016/j.cej.2016.04.011

    CAS  Article  Google Scholar 

  10. 10.

    Roth H, Gendel Y, Buzatu P, David O, Wessling M (2016) Tubular carbon nanotube-based gas diffusion electrode removes persistent organic pollutants by a cyclic adsorption—electro-Fenton process. J Hazard Mater 307:1–6. https://doi.org/10.1016/j.jhazmat.2015.12.066

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517. https://doi.org/10.1016/j.cej.2017.11.059

    CAS  Article  Google Scholar 

  12. 12.

    Furman O, Teel A, Watts R (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428. https://doi.org/10.1021/es1013714

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Waldemer R, Tratnyek P, Johnson R, Nurmi J (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41:1010–1015. https://doi.org/10.1021/es062237m

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J 310:41–62. https://doi.org/10.1016/j.cej.2016.10.064

    CAS  Article  Google Scholar 

  15. 15.

    Gao Y, Gao N, Deng Y, Yang Y, Ma Y (2012) Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem Eng J 195–196:248–253. https://doi.org/10.1016/j.cej.2012.04.084

    CAS  Article  Google Scholar 

  16. 16.

    Wei Z, Villamena F, Weavers L (2017) Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study. Environ Sci Technol 51:3410–3417. https://doi.org/10.1021/acs.est.6b05392

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Duan X, Sun H, Kang J, Wang Y, Indrawirawan S, Wang S (2015) Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal 5:4629–4636. https://doi.org/10.1021/acscatal.5b00774

    CAS  Article  Google Scholar 

  18. 18.

    Liu H, Wang C, Li X, Xuan X, Jiang C, Cui H (2007) A novel electro-Fenton process for water treatment: reaction-controlled pH adjustment and performance assessment. Environ Sci Technol 41:2937–2942. https://doi.org/10.1021/es0622195

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Yuan S, Fan Y, Zhang Y, Tong M, Liao P (2011) Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-fenton degradation of rhodamine B. Environ Sci Technol 45:8514–8520. https://doi.org/10.1021/es2022939

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhou W, Meng X, Gao J, Alshawabkeh AN (2019) Hydrogen peroxide generation from O2 electroreduction for environmental remediation: a state-of-the-art review. Chemosphere 225:588–607. https://doi.org/10.1016/j.chemosphere.2019.03.042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wang A, Bonakdarpour A, Wilkinson D, Gyenge E (2012) Novel organic redox catalyst for the electroreduction of oxygen to hydrogen peroxide. Electrochim Acta 66:222–229

    CAS  Article  Google Scholar 

  22. 22.

    Bonakdarpour A, Esau D, Cheng H, Wang A, Gyenge E, Wilkinson DP (2011) Preparation and electrochemical studies of metal-carbon composite catalysts for small-scale electrosynthesis of H2O2. Electrochim Acta 56:9074–9081. https://doi.org/10.1016/j.electacta.2011.06.043

    CAS  Article  Google Scholar 

  23. 23.

    Zhou W, Rajic L, Meng X, Nazari R, Zhao Y, Wang Y (2019) Efficient H2O2 electrogeneration at graphite felt modified via electrode polarity reversal: utilization for organic pollutants degradation. Chem Eng J 364:428–439. https://doi.org/10.1016/j.cej.2019.01.175

    CAS  Article  Google Scholar 

  24. 24.

    Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 21:314–318. https://doi.org/10.1016/0039-9140(74)80012-3

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Yu F, Zhou M, Zhou L, Peng R (2014) A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ Sci Technol Lett 1:320–324. https://doi.org/10.1021/ez500178p

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51776055) and the China Postdoctoral Science Foundation (Grant No. 2019M661293).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhou or Jihui Gao or Xiaoxiao Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 632 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Gao, J., Chen, S. et al. A novel H2O2-persulfate hybrid system supported by electrochemically induced acidic and alkaline conditions for organic pollutant removal. J Appl Electrochem 50, 791–797 (2020). https://doi.org/10.1007/s10800-020-01440-1

Download citation

Keywords

  • Advanced oxidation processes
  • Electro-fenton
  • Hydrogen peroxide
  • Sodium persulfate
  • Organic pollutants