Electro-oxidation of glycerol by tetrametallic platinum-gold–palladium-silver nanoparticles

Abstract

In this work, the electrochemical conversion of glycerol was studied on tetrametallic PtAuPdAg catalyst. The PtAuPdAg nanoparticles were synthesized via a seed-mediated growth process. The structure of the as-prepared PtAuPdAg nanoparticles was characterized by transmission electron microscopy, electron energy loss spectroscopy and UV–vis absorption spectroscopy. Electrochemical results indicate that the PtAuPdAg catalyst exhibits superior activity towards glycerol oxidation when compared with the Pt/C catalyst. In alkaline solutions, the PtAuPdAg catalyst possesses a current density of 8.90 mA cm−2, which is 18.2 times that of the Pt/C. Moreover, this result is higher than that of most previously reported catalysts. Additionally, the products of glycerol oxidation over the catalyst at potentials of 0.5, 0.7, 0.9, 1.1 and 1.3 V were analyzed by high performance liquid chromatography (HPLC). HPLC results show that the PtAuPdAg catalyst yields a remarkable dihydroxyacetone selectivity of 79.6%, and that the operating conditions have limited effects on the product distribution.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Fernandez PS, Tereshchuk P, Angelucci CA et al (2016) How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces? Phys Chem Chem Phys 18:25582–25591

    CAS  PubMed  Google Scholar 

  2. 2.

    Fernández PS, Fernandes Gomes J, Angelucci CA et al (2015) Establishing a link between well-ordered Pt(100) surfaces and real systems: how do random superficial defects influence the electro-oxidation of glycerol? ACS Catal 5:4227–4236

    Google Scholar 

  3. 3.

    Gomes JF, Martins CA, Giz MJ et al (2013) Insights into the adsorption and electro-oxidation of glycerol: self-inhibition and concentration effects. J Catal 301:154–161

    CAS  Google Scholar 

  4. 4.

    Gomes JF, de Paula FBC, Gasparotto LHS et al (2012) The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media. Electrochim Acta 76:88–93

    CAS  Google Scholar 

  5. 5.

    Kwon Y, Hersbach TJP, Koper MTM (2014) Electro-oxidation of glycerol on platinum modified by adatoms: activity and selectivity effects. Top Catal 57:1272–1276

    CAS  Google Scholar 

  6. 6.

    Gomes JF, Tremiliosi-Filho G (2011) Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2:96

    CAS  Google Scholar 

  7. 7.

    Gomes JF, Garcia AC, Gasparotto LHS et al (2014) Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study. Electrochim Acta 144:361–368

    CAS  Google Scholar 

  8. 8.

    Dai C, Sun L, Liao H et al (2017) Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J Catal 356:14–21

    CAS  Google Scholar 

  9. 9.

    Wang H, Thia L, Li N et al (2015) Pd nanoparticles on carbon nitride-graphene for the selective electro-oxidation of glycerol in alkaline solution. ACS Catal 5:3174–3180

    CAS  Google Scholar 

  10. 10.

    Huang L, Sun JY, Cao SH et al (2016) Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C. ACS Catal 6:7686–7695

    CAS  Google Scholar 

  11. 11.

    Li Y, Wei X, Chen L et al (2019) Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat Commun 10:5335

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Chen Z, Liu C, Zhao X et al (2019) Promoted glycerol oxidation reaction in an interface-confined hierarchically structured catalyst. Adv Mater 31:1804763

    Google Scholar 

  13. 13.

    Dodekatos G, Schünemann S, Tüysüz H (2018) Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal 8:6301–6333

    CAS  Google Scholar 

  14. 14.

    Simões M, Baranton S, Coutanceau C (2012) Electrochemical valorisation of glycerol ChemSumChem 5:2106–2124

    Google Scholar 

  15. 15.

    Kwon Y, Birdja Y, Spanos I et al (2012) Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal 2:759–764

    CAS  Google Scholar 

  16. 16.

    Pagliaro M, Ciriminna R, Kimura H et al (2007) From glycerol to value-added products. Angew Chem Int Edit 46:4434–4440

    CAS  Google Scholar 

  17. 17.

    Zhang Z, Xin L, Li W (2012) Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals. Appl Catal B 119–120:40–48

    Google Scholar 

  18. 18.

    Zhou Y, Shen Y, Piao J (2018) Sustainable conversion of glycerol into value-added chemicals by selective electro-oxidation on Pt-based catalysts. ChemElectroChem 5:1636–1643

    CAS  Google Scholar 

  19. 19.

    Zhang Y, Zheng S, Zhou X et al (2012) Solvent isotope effect and mechanism for the production of hydrogen and lactic acid from glycerol under hydrothermal alkaline conditions. Green Chem 14:3285–3288

    CAS  Google Scholar 

  20. 20.

    Garcia AC, Birdja YY, Tremiliosi-Filho G et al (2017) Glycerol electro-oxidation on bismuth-modified platinum single crystals. J Catal 346:117–124

    CAS  Google Scholar 

  21. 21.

    Garcia AC, Kolb MJ, van Nierop y Sanchez C, et al (2016) Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol. ACS Catal 6:4491–4500

    CAS  Google Scholar 

  22. 22.

    Zhou Y, Shen Y, Xi J et al (2019) Selective electro-oxidation of glycerol to dihydroxyacetone by PtAg skeletons. ACS Appl Mater Interfaces 11:28953–28959

    CAS  PubMed  Google Scholar 

  23. 23.

    Kim Y, Kim HW, Lee S et al (2017) The role of ruthenium on carbon-supported PtRu catalysts for electrocatalytic glycerol oxidation under acidic conditions. ChemCatChem 9:1683–1690

    CAS  Google Scholar 

  24. 24.

    Zhou Y, Shen Y, Xi J (2019) Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol. Appl Catal B 245:604–612

    CAS  Google Scholar 

  25. 25.

    Gilroy KD, Yang X, Xie S et al (2018) Shape-controlled synthesis of colloidal metal nanocrystals by replicating the surface atomic structure on the seed. Adv Mater 30:1706312

    Google Scholar 

  26. 26.

    Niu W, Zhang L, Xu G (2010) Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 4:1987–1996

    CAS  PubMed  Google Scholar 

  27. 27.

    Shen Y, Zhou Y, Wang D et al (2018) Nickel-copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv Energy Mater 8:1701759

    Google Scholar 

  28. 28.

    Zhou Y, Shen Y (2018) Selective electro-oxidation of glycerol over Pd and Pt@Pd nanocubes. Electrochem Commun 90:106–110

    Google Scholar 

  29. 29.

    Zhou Y, Wang Z, Pan Z et al (2019) Exceptional performance of hierarchical Ni-Fe (hydr)oxide@NiCu electrocatalysts for water splitting. Adv Mater 31:1806769

    Google Scholar 

  30. 30.

    Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126:3892–3901

    CAS  PubMed  Google Scholar 

  31. 31.

    Wang H, Zhou S, Gilroy KD et al (2017) Icosahedral nanocrystals of noble metals: synthesis and applications. Nano Today 15:121–144

    CAS  Google Scholar 

  32. 32.

    Yang J, Jim Yang L, Heng-Phon T (2005) Core-shell Ag-Au nanoparticles from replacement reaction in organic medium. J Phys Chem B 109:19208–19212

    CAS  PubMed  Google Scholar 

  33. 33.

    Zhang H, Jin M, Liu H et al (2011) Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 5:8212

    CAS  PubMed  Google Scholar 

  34. 34.

    Kwon Y, Schouten KJP, Koper MTM (2011) Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 3:1176–1185

    CAS  Google Scholar 

  35. 35.

    Oliveira CP, Lussari NV, Sitta E et al (2012) Oscillatory electro-oxidation of glycerol on platinum. Electrochim Acta 85:674–679

    CAS  Google Scholar 

  36. 36.

    Arjona N, Rivas S, Álvarez-Contreras L et al (2017) Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes. New J Chem 41:1854–1863

    CAS  Google Scholar 

  37. 37.

    Qian H, Chen S, Fu Y et al (2015) Platinum-palladium bimetallic nanoparticles on graphitic carbon nitride modified carbon black: a highly electroactive and durable catalyst for electrooxidation of alcohols. J Power Sources 300:41–48

    CAS  Google Scholar 

  38. 38.

    de Araujo VMF, Antolini E, Pocrifka LA et al (2018) Electro-oxidation of glycerol on carbon supported Pt75CoxNi25-x (x=0, 0.9, 12.5, 24.1 and 25) catalysts in an alkaline medium. Electrocatalysis 1–9:1868–2529

    Google Scholar 

  39. 39.

    Zhou Y, Shen Y, Luo X (2020) Optimizing the activity and selectivity of glycerol oxidation over core-shell electrocatalysts. J Catal 381:130–138

    CAS  Google Scholar 

  40. 40.

    Lee S, Kim HJ, Lim EJ et al (2016) Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process. Green Chem 18:2877–2887

    CAS  Google Scholar 

  41. 41.

    Fu S, Zhu C, Du D et al (2015) Facile one-step synthesis of three-dimensional Pd-Ag bimetallic alloy networks and their electrocatalytic activity toward ethanol oxidation. ACS Appl Mater Interfaces 7:13842–13848

    CAS  PubMed  Google Scholar 

  42. 42.

    Hong W, Wang J, Wang E (2014) Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl Mater Interfaces 6:9481–9487

    CAS  PubMed  Google Scholar 

  43. 43.

    Wu W, Tang Z, Wang K et al (2018) Peptide templated AuPt alloyed nanoparticles as highly efficient bi-functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Electrochim Acta 260:168–176

    CAS  Google Scholar 

Download references

Acknowledgements

The project was financially supported by the National Natural Science Foundation of China (21706081).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Shen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Shen, Y. Electro-oxidation of glycerol by tetrametallic platinum-gold–palladium-silver nanoparticles. J Appl Electrochem 51, 79–86 (2021). https://doi.org/10.1007/s10800-020-01426-z

Download citation

Keywords

  • PtAuPdAg
  • Glycerol oxidation
  • Selectivity
  • Dihydroxyacetone
  • Seed-mediated synthesis