Skip to main content
Log in

Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A glassy carbon electrode modified with silver nanoparticles was employed as a nitrate sensor to give a calibration curve with a sensitivity of 2.6 μA μM−1 cm−2 and a LOD of 4.1 μM NO3 at a neutral pH. The calibration curve was generated using rotating disc voltammetry coupled with constant potential amperometry, giving efficient diffusion of the nitrate to the surface. Reasonably good selectivity for nitrate was observed in the presence of nitrite, chloride and phosphate anions. The nitrate diffusion coefficient was estimated as 1.41 × 10−5 to 1.73 × 10−5 cm2 s−1 using a combination of cyclic voltammetry and rotating disc voltammetry, while the rate constant for the nitrate reduction reaction was estimated as 0.11 cm s−1. Some deviations from the Randles–Sevick and Levich equations were seen at higher scan rates, consistent with the slow kinetics and nitrate adsorption. While stable silver nanoparticles were electrochemically formed in the solution phase and incorporated within a hydrogel matrix, the best approach in forming the nitrate sensor was the direct electrodeposition of silver nanoparticles at glassy carbon at − 0.50 V versus Ag|Ag+ following a 60-min seeding period at the open-circuit potential.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635

    Article  Google Scholar 

  2. van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, Jetten MSM, Lucker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  Google Scholar 

  3. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B 851:51–70

    Article  CAS  Google Scholar 

  4. Burakham R, Oshima M, Grudpan K, Motomizu S (2004) Simple flow-injection system for the simultaneous determination of nitrite and nitrate in water samples. Talanta 64:1259–1265

    Article  CAS  Google Scholar 

  5. Helmke SM, Duncan MW (2007) Measurement of the NO metabolites, nitrite and nitrate, in human biological fluids by GC–MS. J Chromatogr B 851:83–92

    Article  CAS  Google Scholar 

  6. Jobgen WS, Jobgen SC, Li H, Meininger CJ, Wu G (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82

    Article  CAS  Google Scholar 

  7. Icardo MC, Mateo JVG, Calatayud JM (2001) Determination of nitrite by inhibition of the chemiluminescence of acriflavine in a flow-injection assembly. Analyst 126:1423–1427

    Article  CAS  Google Scholar 

  8. Miyado T, Tanaka Y, Nagai H, Takeda S, Saito K, Fukushi K, Yoshida Y, Wakida S-i, Niki E (2004) Simultaneous determination of nitrate and nitrite in biological fluids by capillary electrophoresis and preliminary study on their determination by microchip capillary electrophoresis. J Chromatogr A 1051:185–191

    Article  CAS  Google Scholar 

  9. Zhan X-Q, Li D-H, Zheng H, Xu J-G (2001) A sensitive fluorimetric method for the determination of nitrite and nitrate in seawater by a novel red-region fluorescence dye. Anal Lett 34:2761–2770

    Article  CAS  Google Scholar 

  10. Manea F, Remes A, Radovan C, Pode R, Picken S, Schoonman J (2010) Simultaneous electrochemical determination of nitrate and nitrite in aqueous solution using Ag-doped zeolite-expanded graphite-epoxy electrode. Talanta 83:66–71

    Article  CAS  Google Scholar 

  11. Badea M, Amine A, Palleschi G, Moscone D, Volpe G, Curulli A (2001) New electrochemical sensors for detection of nitrites and nitrates. J Electroanal Chem 509:66–72

    Article  CAS  Google Scholar 

  12. Carpenter NG, Pletcher D (1995) Amperometric method for the determination of nitrate in water. Anal Chim Acta 317:287–293

    Article  CAS  Google Scholar 

  13. Shariar SM, Hinoue T (2010) Simultaneous voltammetric determination of nitrate and nitrite ions using a copper electrode pretreated by dissolution/redeposition. Anal Sci 26:1173–1179

    Article  CAS  Google Scholar 

  14. Davis J, Moorcroft MJ, Wilkins SJ, Compton RG, Cardosi MF (2000) Electrochemical detection of nitrate and nitrite at a copper modified electrode. Analyst 125:737–742

    Article  CAS  Google Scholar 

  15. Reyter D, Belanger D, Roue L (2008) Study of the electroreduction of nitrate on copper in alkaline solution. Electrochim Acta 53:5977–5984

    Article  CAS  Google Scholar 

  16. Fedurco M, Kedzierzawski P, Augustynski J (1999) Effect of multivalent cations upon reduction of nitrate ions at the Ag electrode. J Electrochem Soc 146(1999):2569–2572

    Article  CAS  Google Scholar 

  17. Manzo-Robledo A, Levy-Clement C, Alonso-Vante N (2014) The interplay between hydrogen evolution reaction and nitrate reduction on boron-doped diamond in aqueous solution: the effect of alkali cations. Electrochim Acta 117:420–425

    Article  CAS  Google Scholar 

  18. Wang Q-H, Yu L-J, Liu Y, Lin L, Lu R-g, Zhu J-p, He L, Lu Z-L (2017) Methods for the detection and determination of nitrite and nitrate: a review. Talanta 165:709–720

    Article  CAS  Google Scholar 

  19. Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259

    Article  CAS  Google Scholar 

  20. Branagan D, Breslin CB (2019) Electrochemical detection of glucose at physiological pH using gold nanoparticles deposited on carbon nanotubes. Sens Actuators B 282:490–499

    Article  CAS  Google Scholar 

  21. Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152

    Article  CAS  Google Scholar 

  22. Sahoo PK, Kamal SSK, Shankar B, Sreedhar B, Durai L (2012) Facile chemical synthesis of nano-silver powders for printable electronics applications. J Exp Nanosci 7:520–528

    Article  CAS  Google Scholar 

  23. Zhad HRLZ, Lai RY (2015) Comparison of nanostructured silver-modified and carbon ultramicrelectrodes for electrochemical detection of nitrate. Anal Chim Acta 892:153–159

    Article  Google Scholar 

  24. Jiang J, Zhang L, Shanbhag V (2014) Improving electrochemical sensitivity of silver electrodes for nitrate detection in neutral and bas media through surface nanostructuration. J Electrochem Soc 161:B3028–B3033

    Article  CAS  Google Scholar 

  25. Taguchi S, Feliu JM (2008) Kinetic study of nitrate reduction on Pt(110) electrode in perchloric acid solution. Electrochim Acta 53:3626–3634

    Article  CAS  Google Scholar 

  26. Yang J, Duca M, Schouten KJP, Koper MTM (2011) Formation of volatile products during nitrate reduction on a Sn-modified Pt electrode in acid solution. J Electroanal Chem 662:87–92

    Article  CAS  Google Scholar 

  27. Liang J, Zheng Y, Liu Z (2016) Nanowire-based Cu electrode as electrochemical sensor for detection of nitrate in water. Sens Actuators B 232:336–344

    Article  CAS  Google Scholar 

  28. Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B 107:8898–8904

    Article  CAS  Google Scholar 

  29. Kim JH, Kim CK, Won J, Kang YS (2005) Role of anions for the reduction behavior of silver ions in polymer/silver salt complex membranes. J Membr Sci 250:207–214

    Article  CAS  Google Scholar 

  30. Yildiz G, Çatalgil-Giz H, Kadirgan F (2000) Electrochemically prepared acrylamide/N, N′-methylene bisacrylamide gels. J Appl Electrochem 30:71–75

    Article  CAS  Google Scholar 

  31. Singh A (2011) Synthesis and applications of polyacrylamide gels catalyzed by silver nitrate. J Appl Polym Sci 119:1084–1089

    Article  CAS  Google Scholar 

  32. Rand DAJ, Woods R (1975) Determination of real surface area of palladium electrodes, electrochemical oxidation of thin palladium films on gold. Comments. Anal Chem 47:1481–1483

    Article  CAS  Google Scholar 

  33. Motheo AJ, Machado SAS, Van Kampen MH, Santos JR Jr (1993) Electrochemical determination of roughness of silver electrode surface. J Braz Chem Soc 4:122–127

    Article  CAS  Google Scholar 

  34. Tang Y, Furtak TE (1991) Study of underpotential deposition of metals using the quartz crystal microbalance. Electrochim Acta 36:1873–1877

    Article  CAS  Google Scholar 

  35. Hafezi B, Majidi MR (2013) A sensitive and fast electrochemical sensor based on copper nanostructures for nitrate determination in foodstuffs and mineral water. Anal Methods 5:3552–3556

    Article  CAS  Google Scholar 

  36. Wang Y, Qu J, Wu R, Lei P (2006) The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode. Water Res 40:1224–1232

    Article  CAS  Google Scholar 

  37. Aouina N, Cachet H, Debiemme-Chouvy C, Tran TTM (2010) Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy. Electrochim Acta 55:7341–7345

    Article  CAS  Google Scholar 

  38. Gartia MR, Braunschweig B, Chang T-W, Moinzadeh P, Minsker BS, Agha G, Wieckowski A, Keefer LL, Liu GL (2012) The microelectronic wireless nitrate sensor network for environmental water monitoring. J Environ Monit 14:3068–3075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was funded by the Irish Research Council, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmel B. Breslin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, C.M., Breslin, C.B. Electrochemical formation of silver nanoparticles and their applications in the reduction and detection of nitrates at neutral pH. J Appl Electrochem 50, 125–138 (2020). https://doi.org/10.1007/s10800-019-01374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01374-3

Keywords

Navigation