Skip to main content
Log in

Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO4·5H2O, ZnSO4·7H2O and Na2SnO3·3H2O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu5Zn8 and Cu10Sn3 phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbott AP, Frisch G, Ryder KS (2013) Annu Rev Mater Res 43:335–358

    Article  CAS  Google Scholar 

  2. Chu Q, Liang J, Hao J (2014) Electrochimica Acta 115:499–503

    Article  CAS  Google Scholar 

  3. Vreese PD, Skoczylas A, Matthijs E, Fransaer E, Binnemans K (2013) Electrochimica Acta 108:788–794

    Article  CAS  Google Scholar 

  4. Hrussanova A, Krastev I, Beck G, Zielonka A (2010) J Appl Electrochem 40:2145–2151

    Article  CAS  Google Scholar 

  5. Qiao X, Li H, Zhao W, Li Q (2013) Electrochimica Acta 89:771–777

    Article  CAS  Google Scholar 

  6. Gougaud C, Rai D, Delbos S, Chassaing E, Lincot D (2013) J Electrochem Soc 160:D485–D494

    Article  CAS  Google Scholar 

  7. Joi A, Akolkar R, Landau U (2013) J Electrochem Soc 160:D3001–D3003

    Article  CAS  Google Scholar 

  8. Almeida MRHD, Barbano EP, Carvalho MFD, Tulio PC, Carlos IA (2015) Appl Surf Sci 333:13–22

    Article  CAS  Google Scholar 

  9. Clauwaert K, Binnemans K, Matthijs E, Fransaer J (2016) Electrochimica Acta 188:344–355

    Article  CAS  Google Scholar 

  10. Ding LF, Liu F, Cheng J, Niu YL (2018) J Appl Electrochem 48:175–185

    Article  CAS  Google Scholar 

  11. Slupska M, Ozga P (2014) Electrochimica Acta 141:149–160

    Article  CAS  Google Scholar 

  12. Salhi Y, Cherrouf S, Cherkaoui M, Abdelouahdi K (2016) Appl Surf Sci 367:64–69

    Article  CAS  Google Scholar 

  13. Almeida MRHD, Barbano EP, Zacarin MG, Brito MMD, Tulio PC, Carlos IA (2016) Surf Coat Technol 287:103–112

    Article  CAS  Google Scholar 

  14. Ramírez C, Calderón JA (2016) J Electroanal Chem 765:132–139

    Article  CAS  Google Scholar 

  15. Pary P, Bengoa LN, Egli WA (2015) J Electrochem Soc 162:D275–D282

    Article  CAS  Google Scholar 

  16. Josell D, Moffat TP (2014) J Electrochem Soc 161:D558–D563

    Article  CAS  Google Scholar 

  17. Almeida MRHD, Barbano EP, Carvalho MFD, Carlos IA, Siqueira JLP (2011) Surf Coat Technol 206:95–102

    Article  CAS  Google Scholar 

  18. Ubale AU, Sakhare YS, Bombatkar SM (2013) Mater Res Bull 48:3564–3571

    Article  CAS  Google Scholar 

  19. He Y, Gao X, Zhang Y, Xu H (2012) Surf Coat Technol 206:4310–4315

    Article  CAS  Google Scholar 

  20. Banica R, Nyari T, Sasca V (2012) Int J Hydrogen Energy 37:16489–16497

    Article  CAS  Google Scholar 

  21. Darban AK, Aazami M, Meléndez AM, Abdollahy M, Gonzalez I (2011) Hydrometallurgy 105:296–303

    Article  CAS  Google Scholar 

  22. Yin KB, Xia YD, Chan CY, Zhang WQ, Wang QJ, Zhao XN, Li AD, Liu ZG, Bayes MW, Yee KW (2008) Scr Mater 58:65–68

    Article  CAS  Google Scholar 

  23. Joint Committee on Powder Diffraction Standards. JCPDS, powder diffraction file—PDF-2, database sets 1-49, ICDD, 2000 (CDROM)

  24. Murase K, Yanase K, Ichii T, Sugimura H (2010) J Electrochem Soc 160:515–521

    Google Scholar 

  25. Chen Z, Lei H, Lei W, Zhang C, Niu H (2011) Appl Surf Sci 257:8490–8492

    Article  CAS  Google Scholar 

  26. Feng Z, Li Q, Zhang J, Yang P (2015) J Electrochem Soc 162:D412–D422

    Article  CAS  Google Scholar 

  27. Tułodziecki M, Guery C, Taberna PL, Tarascon JM (2012) J Electrochem Soc 159:D691

    Article  CAS  Google Scholar 

  28. Murase K, Ito A, Ichii T, Sugimura H (2011) J Electrochem Soc 158:D335–D698

    Article  CAS  Google Scholar 

  29. Yu TY, Lee H, Hsu HL, Dow WP, Cheng HK (2016) J Electrochem Soc 163:D734–D741

    Article  CAS  Google Scholar 

  30. Juškėnas R, Mockus Z, Kanapeckaitė S, Stalnionis G, Survila A (2017) Electrochimica Acta 52:928–935

    Article  Google Scholar 

  31. Carvalho MFD, Barbano EP, Carlos IA (2013) Electrochimica Acta 109:798–808

    Article  CAS  Google Scholar 

  32. Carvalho MFD, Barbano EP, Carlos IA (2015) Surf Coat Technol 262:111–122

    Article  CAS  Google Scholar 

  33. Zhao X, Zhang J, Qu J (2015) Electrochimica Acta 180:129–137

    Article  CAS  Google Scholar 

  34. Schah-Mohammedi P, Shenderovich IG, Detering C, Limbach H, Tolstoy PM, Smirnov SN, Denisov GS, Golubev NS (2013) J Electrochem Soc 122:12878–12879

    Google Scholar 

  35. Jiang L, Huang J, Wang Y, Tang H (2012) Analyst 137:4209–4219

    Article  CAS  PubMed  Google Scholar 

  36. He H, Wu D, Zhao L, Luo C, Dai C, Zhang Y (2016) J Hazard Mater 309:116–125

    Article  CAS  PubMed  Google Scholar 

  37. Guan X, Jiang X, Qiao J, Zhou G (2015) J Hazard Mater 300:688–694

    Article  CAS  PubMed  Google Scholar 

  38. Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q (2015) Chem Eng J 281:1–10

    Article  CAS  Google Scholar 

  39. Zhao M, Yu L, Akolkar R, Anderson AB (2016) J Phys Chem 120:24789–24793

    CAS  Google Scholar 

  40. Zhang Z, Fu Y, Zhou C, Li J, Lai Y (2015) Solid State Ion 269:62–66

    Article  CAS  Google Scholar 

  41. Kržišnik N, Mladenovič A, Škapin AS, Škrlep L, Ščančar J, Milačič R (2014) Sci Total Environ 476:20–28

    Article  Google Scholar 

  42. Garapati S, Burns CS, Rodriguez A (2014) J Phys Chem B 118:12960–12964

    Article  CAS  PubMed  Google Scholar 

  43. Liu F, Shan C, Zhang X, Zhang Y, Zhang W (2017) J Hazard Mater 321:290–298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. NSFC51604180), the Applied Basic Research Programs of Science and Technology Department of Shanxi Province (Grant No. 201701D221036), the start-up funds of Taiyuan Institute of Technology, and the Youth Academic Leader of Taiyuan Institute of Technology support program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Chen, C., Dong, Y. et al. Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system. J Appl Electrochem 49, 715–729 (2019). https://doi.org/10.1007/s10800-019-01316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01316-z

Keywords

Navigation