Skip to main content
Log in

Ultrafine LiNi1/3Co1/3Mn1/3O2 powders via an enhanced thermal decomposition solid state reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Enhanced thermal decomposition of carbonates is developed to improve the traditional solid state reaction for the synthesis of ultrafine LiNi1/3Co1/3Mn1/3O2 powders. Controllable activation is obtained by optimizing the mechano-chemical treatment time, which is found to affect lattice structure, morphology and electrochemical properties of the as-synthesized ultrafine LiNi1/3Co1/3Mn1/3O2 powders. The optimal mechano-chemical activation time of 10 h results in more stable and integrated structured ultrafine LiNi1/3Co1/3Mn1/3O2 powders with average diameter of 200–500 nm, leading to a high reversible capacity of 114.3 and 140.9 mAh g−1 at 6 C (1620 mA g−1) in the voltage range of 2.5–4.3 and 2.5–4.5 V, respectively. Moreover, the particles exhibit capacity retentions of 80.8% (2.5–4.3 V) and 83.3% (2.5–4.5 V) at 270 mA g−1 after 200 cycles. Importantly, it is revealed that ball-milling has a positive impact on the calcination process, and the decomposition efficiency is about 35.7% higher compared to ball-milling-free process.

Graphical abstract

The LiNi1/3Co1/3Mn1/3O2 powders prepared by enhancing thermal decomposition show a remarkable high temperature electrochemical property. For optimum performance, the time of mechano-chemical activation should be neither too long nor too short. In addition, the calcination process is further studied in order to understand the transformation regularities of the electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642–643

    Article  Google Scholar 

  2. Wang Q, Tian N, Xu K, Han LY, Zhang J, Zhang WH, Guo SH, You CY (2016) A facile method of improving the high rate cycling performance of LiNi1/3Co1/3Mn1/3O2 cathode material. J Alloys Compd 686:267–272

    Article  CAS  Google Scholar 

  3. Wang L, Ma YL, Qu YT, Cheng XQ, Zuo PJ, Du CY, Gao YZ, Yin GP (2016) Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries. Electrochim Acta 191:8–15

    Article  CAS  Google Scholar 

  4. Han ZH, Yu JP, Zhan H, Liu XJ, Zhou YH (2014) Sb2O3-modified LiNi1/3Co1/3Mn1/3O2 material with enhanced thermal safety and electrochemical property. J Power Sources 254:106–111

    Article  CAS  Google Scholar 

  5. Zhang XH, Chen ZL, Schwarz B, Sigel F, Ehrenberg H, An K, Zhang ZF, Zhang QG, Li YT, Li J (2017) Kinetic characteristics up to 4.8 V of layered LiNi1/3Co1/3Mn1/3O2 cathode materials for high voltage lithium-ion batteries. Electrochim Acta 227:152–161

    Article  CAS  Google Scholar 

  6. Hong TE, Jeong ED, Baek SR, Byeon MR, Lee YS, Khan FN, Yang HS (2012) Nano SIMS characterization of boron- and aluminum-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium secondary ion batteries. J Appl Electrochem 42:41–46

    Article  CAS  Google Scholar 

  7. Jiang XY, Sha YJ, Cai R, Shao ZP (2015) The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries. J Mater Chem A 3:10536–10544

    Article  CAS  Google Scholar 

  8. Zhu WB, Zhuang ZY, Lin ZY, Yang YM, Lin YB, Huang ZG (2016) Enhanced electrochemical properties and thermal stability of LiNi1/3Co1/3Mn1/3O2 by surface modification with Eu2O3. Ionics 22:1533–1540

    Article  CAS  Google Scholar 

  9. Yang CF, Zhang XS, Huang MY, Huang JJ, Fang ZB (2017) Preparation and rate capability of carbon coated LiNi1/3Co1/3Mn1/3O2 as cathode material in lithium ion batteries. ACS Appl Mater Interfaces 9:12408–12415

    Article  CAS  PubMed  Google Scholar 

  10. Sa QN, Gratz E, He MN, Lu WQ, Apelian D, Wang Y (2015) Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream. J Power Sources 282:140–145

    Article  CAS  Google Scholar 

  11. Lin CH, Zhang YZ, Chen L, Lei Y, Ou JK, Guo Y, Yuan HY, Xiao D (2015) Hydrogen peroxide assisted synthesis of LiNi1/3Co1/3Mn1/3O2 as high-performance cathode for lithium-ion batteries. J Power Sources 280:263–271

    Article  CAS  Google Scholar 

  12. Li JG, Wang L, Zhang Q, He XM (2009) Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 190:149–153

    Article  CAS  Google Scholar 

  13. Lu CH, Lin YK (2009) Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders. J Power Sources 189:40–44

    Article  CAS  Google Scholar 

  14. Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries. ACS Appl Mater Interfaces 3:2966–2972

    Article  CAS  Google Scholar 

  15. Yao YL, Liu HC, Li GC, Peng HR, Chen KZ (2013) Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Electrochim Acta 113:340–345

    Article  CAS  Google Scholar 

  16. Kim HS, Kong M, Kim K, Kim IJ, Gu HB (2007) Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Power Sources 171:917–921

    Article  CAS  Google Scholar 

  17. Shaju KM, Rao GVS, Chowdari BVR (2003) Electrochemical kinetic studies of li-ion in O2-structured Li2/3(Ni1/3Mn2/3)O2 and Li(2/3)+x(Ni1/3Mn2/3)O2 by EIS and GITT. J Electrochem Soc 150:A1–A13

    Article  CAS  Google Scholar 

  18. Hu SK, Cheng GH, Cheng MY, Hwang BJ, Santhanam R (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569

    Article  CAS  Google Scholar 

  19. Hua WB, Wang YJ, Zhong YJ, Wang GP, Zhong BH, Fang BZ, Guo XD, Liao SX, Wang HJ (2015) An approach towards synthesis of nanoarchitectured LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Chin J Chem 33:261–267

    Article  CAS  Google Scholar 

  20. Cho Y, Oh P, Cho J (2013) A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. Nano Lett 13:1145–1152

    Article  CAS  PubMed  Google Scholar 

  21. Zhang XY, Mauger A, Lu Q, Groult H, Perrigaud L, Gendron F, Julien CM (2010) Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by wet-chemical method. Electrochim Acta 55:6440–6449

    Article  CAS  Google Scholar 

  22. Cong LN, Zhao Q, Wang Z, Zhang YH, Wu XL, Zhang JP, Wang RS, Xie HM, Sun LQ (2016) (PO4)3− polyanions doped LiNi1/3Co1/3Mn1/3O2: an ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries. Electrochim Acta 201:8–19

    Article  CAS  Google Scholar 

  23. Zheng JL, Zhou W, Ma YR, Jin H, Guo L (2015) Combustion synthesis of LiNi1/3Co1/3Mn1/3O2 powders with enhanced electrochemical performance in LIBs. J Alloys Compd 635:207–212

    Article  CAS  Google Scholar 

  24. Guo X, Cong LN, Zhao Q, Tai LH, Wu XL, Zhang JP, Wang RS, Xie HM, Sun LQ (2015) Enhancement of electrochemical performance of LiNi1/3Co1/3Mn1/3O2 by surface modification with MnO2. J Alloys Compd 651:12–18

    Article  CAS  Google Scholar 

  25. Kim JM, Chung HT (2004) Role of transition metals in layered Li[Ni Co, Mn]O2 under electrochemical operation. Electrochim Acta 49:3573–3580

    Article  CAS  Google Scholar 

  26. Venkatraman S, Choi J, Manthiram A (2004) Factors influencing the chemical lithium extraction rate from layered LiNi1−y−zCoyMnzO2 cathodes. Electrochem Commun 6:832–837

    Article  CAS  Google Scholar 

  27. Wang Z, Huang QZ, Liu H, Peng LF, Liu H, Liu GB (2016) An investigation on the unsatisfactory rate capability of spherical LiNi1/3Co1/3Mn1/3O2 particles prepared by using Na2CO3 as a precipitant. Ionics 22:1–9

    Article  CAS  Google Scholar 

  28. Wu F, Wang M, Su YF, Bao LY, Chen S (2010) A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery. J Power Sources 195:2362–2367

    Article  CAS  Google Scholar 

  29. Huang ZD, Liu XM, Zhang B, Oh SW, Ma PC, Kim JK (2011) LiNi1/3Co1/3Mn1/3O2 with a novel one-dimensional porous structure: a high-power cathode material for rechargeable Li-ion batteries. Scripta Mater 64:122–125

    Article  CAS  Google Scholar 

  30. Gao P, Li YH, Liu HD, Pinto JO, Jiang XF, Yang G (2012) Improved high rate capacity and lithium diffusion ability of LiNi1/3Co1/3Mn1/3O2 with ordered crystal structure. J Electrochem Soc 159:A506–A513

    Article  CAS  Google Scholar 

  31. Xu F, Yan HG, Chen JH, He M, Zhang ZF, Fan CL, Liu GS (2017) Improving electrochemical properties of LiCoO2 by enhancing thermal decomposition of cobalt and lithium carbonates to synthesize ultrafine powders. Ceram Int 43:6494–6501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the joint fund project of National Natural Science Foundation of Yunnan Province (U1202272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongge Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Yan, H., Chen, J. et al. Ultrafine LiNi1/3Co1/3Mn1/3O2 powders via an enhanced thermal decomposition solid state reaction. J Appl Electrochem 49, 647–656 (2019). https://doi.org/10.1007/s10800-019-01313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01313-2

Keywords

Navigation