Skip to main content
Log in

Single-step electrodeposition of superhydrophobic black NiO thin films

  • Short Communication
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Black finished surfaces have extensive applications in many domains, such as optics, solar cells, and aerospace. The single-step electrodeposition of superhydrophobic black NiO films from a dimethyl sulfoxide-based electrolyte is described in this paper. The physicochemical properties of the obtained film were characterized using scanning electron microscopy, X-ray diffraction, and electrochemical tests (electrochemical impedance spectroscopy and potentiodynamic polarization). A rough surface with a low reflection of light was formed after the deposition process that increased the contact angle of water from about 87° (for bare Cu) to 163° (in presence of the black coating), which improved the corrosion resistance of the Cu substrate by about 30%. The formed black NiO film revealed a notably high stability and kept its appearance even after corrosion tests.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Liu Y, Beckett D, Hawthorne D (2011) Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni–P films. Appl Surf Sci 257:4486–4494. https://doi.org/10.1016/j.apsusc.2010.12.105

    Article  CAS  Google Scholar 

  2. Somasundaram S, Pillai AM, Rajendra A, Sharma AK (2015) High emittance black nickel coating on copper substrate for space applications. J Alloy Compd 643:263–269. https://doi.org/10.1016/j.jallcom.2015.04.149

    Article  CAS  Google Scholar 

  3. Persky MJ (1999) Review of black surfaces for space-borne infrared systems. Rev Sci Instrum 70:2193–2217. https://doi.org/10.1063/1.1149739

    Article  CAS  Google Scholar 

  4. Rahman T, Bonilla RS, Nawabjan A, Wilshaw PR, Boden SA (2017) Passivation of all-angle black surfaces for silicon solar cells. Sol Energy Mater Sol Cells 160:444–453. https://doi.org/10.1016/j.solmat.2016.10.044

    Article  CAS  Google Scholar 

  5. Wang YF, Fu WG, Feng M, Cao XW (2008) Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces. Appl Phys A 90:549–553. https://doi.org/10.1007/s00339-007-4323-z

    Article  CAS  Google Scholar 

  6. Yue PP, Jin YZ, Hu XD, Yan HY, Zeng GQ (2014) Study on the surface morphologies of nickel–phosphorus ultra-black films. Adv Mater Res 924:166–169. https://doi.org/10.4028/www.scientific.net/AMR.924.166

    Article  CAS  Google Scholar 

  7. Xing F, Zhao B, Shi W (2013) Study on tunable fabrication of the ultra-black Ni–P film and its blacking mechanism. Electrochim Acta 100:157–163. https://doi.org/10.1016/j.electacta.2013.03.145

    Article  CAS  Google Scholar 

  8. Brown RJC, Brewer PJ, Milton MJT (2002) The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces. J Mater Chem 12:2749–2754. https://doi.org/10.1039/B204483H

    Article  CAS  Google Scholar 

  9. Liu T, Chen S, Cheng S, Tian J, Chang X, Yin Y (2007) Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochim Acta 52:8003–8007. https://doi.org/10.1016/j.electacta.2007.06.072

    Article  CAS  Google Scholar 

  10. Wan Y, Chen M, Liu W, Shen X, Min Y, Xu Q (2018) The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance. Electrochim Acta 270:310–318. https://doi.org/10.1016/j.electacta.2018.03.060

    Article  CAS  Google Scholar 

  11. Yu D, Tian J, Dai J, Wang X (2013) Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater. Electrochim Acta 97:409–419. https://doi.org/10.1016/j.electacta.2013.03.071

    Article  CAS  Google Scholar 

  12. Esmailzadeh S, Khorsand S, Raeissi K, Ashrafizadeh F (2015) Microstructural evolution and corrosion resistance of super-hydrophobic electrodeposited nickel films. Surf Coat Technol 283:337–346. https://doi.org/10.1016/j.surfcoat.2015.11.005

    Article  CAS  Google Scholar 

  13. He Y, Sun WT, Wang SC, Reed PAS, Walsh FC (2017) An electrodeposited Ni-P-WS 2 coating with combined super-hydrophobicity and self-lubricating properties. Electrochim Acta 245:872–882. https://doi.org/10.1016/j.electacta.2017.05.166

    Article  CAS  Google Scholar 

  14. Akaltun Y, Çayır T (2015) Fabrication and characterization of NiO thin films prepared by SILAR method. J Alloy Compd 625:144–148. https://doi.org/10.1016/j.jallcom.2014.10.194

    Article  CAS  Google Scholar 

  15. Martínez-Gil M, Pintor-Monroy MI, Cota-Leal M, Cabrera-German D, Garzon-Fontecha A, Quevedo-López MA, Sotelo-Lerma M (2017) Influence of annealing temperature on nickel oxide thin films grown by chemical bath deposition. Mater Sci Semicond Process 72:37–45. https://doi.org/10.1016/j.mssp.2017.09.021

    Article  CAS  Google Scholar 

  16. Das MR, Mukherjee A, Mitra P (2017) Structural, optical and ac electrical characterization of CBD synthesized NiO thin films: influence of thickness. Physica E 93:243–251. https://doi.org/10.1016/j.physe.2017.06.018

    Article  CAS  Google Scholar 

  17. Horak P, Remes Z, Bejsovec V, Vacik J, Danis S, Kormunda M (2017) Nickel oxide films by thermal annealing of ion-beam-sputtered Ni: structure and electro-optical properties. Thin Solid Films 640:52–59. https://doi.org/10.1016/j.tsf.2017.08.047

    Article  CAS  Google Scholar 

  18. Jlassi M, Sta I, Hajji M, Ezzaouia H (2014) Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating. Mater Sci Semicond Process 21:7–13. https://doi.org/10.1016/j.mssp.2014.01.018

    Article  CAS  Google Scholar 

  19. Mutkule SU, Navale ST, Jadhav VV, Ambade SB, Naushad M, Sagar AD, Patil VB, Stadler FJ, Mane RS (2017) Solution-processed nickel oxide films and their liquefied petroleum gas sensing activity. J Alloy Compd 695:2008–2015. https://doi.org/10.1016/j.jallcom.2016.11.037

    Article  CAS  Google Scholar 

  20. Koussi-Daoud S, Planchat A, Renaud A, Pellegrin Y, Odobel F, Pauporté T (2017) Solvent-templated electrodeposition of mesoporous nickel oxide layers for solar cell applications. ChemElectroChem 4:2618–2625. https://doi.org/10.1002/celc.201700495

    Article  CAS  Google Scholar 

  21. Bahramian A, Eyraud M, Vacandio F, Knauth P (2018) Improving the corrosion properties of amorphous Ni–P thin films using different additives. Surf Coat Technol 345:40–52. https://doi.org/10.1016/j.surfcoat.2018.03.075

    Article  CAS  Google Scholar 

  22. Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M (2010) Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A 364:72–81. https://doi.org/10.1016/j.colsurfa.2010.04.040

    Article  CAS  Google Scholar 

  23. Liu Y, Li S, Zhang J, Wang Y, Han Z, Ren L (2014) Fabrication of biomimetic superhydrophobic surface with controlled adhesion by electrodeposition. Chem Eng J 248:440–447. https://doi.org/10.1016/j.cej.2014.03.046

    Article  CAS  Google Scholar 

  24. Nalage SR, Chougule MA, Sen S, Joshi PB, Patil VB (2012) Sol–gel synthesis of nickel oxide thin films and their characterization. Thin Solid Films 520:4835–4840. https://doi.org/10.1016/j.tsf.2012.02.072

    Article  CAS  Google Scholar 

  25. Hashemzadeh M, Raeissi K, Ashrafizadeh F, Khorsand S (2015) Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings. Surf Coat Technol 283:318–328. https://doi.org/10.1016/j.surfcoat.2015.11.008

    Article  CAS  Google Scholar 

  26. Esmaeilzadeh P, Sadeghi MT, Fakhroueian Z, Bahramian A, Norouzbeigi R (2015) Wettability alteration of carbonate rocks from liquid-wetting to ultra gas-wetting using TiO2, SiO2 and CNT nanofluids containing fluorochemicals, for enhanced gas recovery. J Nat Gas Sci Eng 26:1294–1305. https://doi.org/10.1016/j.jngse.2015.08.037

    Article  CAS  Google Scholar 

  27. Hang T, Hu A, Ling H, Li M, Mao D (2010) Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Appl Surf Sci 256:2400–2404. https://doi.org/10.1016/j.apsusc.2009.10.074

    Article  CAS  Google Scholar 

  28. Tian F, Hu A, Li M, Mao D (2012) Superhydrophobic nickel films fabricated by electro and electroless deposition. Appl Surf Sci 258:3643–3646. https://doi.org/10.1016/j.apsusc.2011.11.130

    Article  CAS  Google Scholar 

  29. Khorsand S, Raeissi K, Ashrafizadeh F, Arenas MA, Conde A (2016) Corrosion behaviour of super-hydrophobic electrodeposited nickel–cobalt alloy film. Appl Surf Sci 364:349–357. https://doi.org/10.1016/j.apsusc.2015.12.122

    Article  CAS  Google Scholar 

  30. Huttunen-Saarivirta E, Rajala P, Bomberg M, Carpén L (2017) EIS study on aerobic corrosion of copper in ground water: influence of micro-organisms. Electrochim Acta 240:163–174. https://doi.org/10.1016/j.electacta.2017.04.073

    Article  CAS  Google Scholar 

  31. Rezaei Niya SM, Hoorfar M (2016) On a possible physical origin of the constant phase element. Electrochim Acta 188:98–102. https://doi.org/10.1016/j.electacta.2015.11.142

    Article  CAS  Google Scholar 

  32. Torabi S, Cherry M, Duijnstee EA, Le Corre VM, Qiu L, Hummelen JC, Palasantzas G, Koster LJA (2017) Rough electrode creates excess capacitance in thin-film capacitors. ACS Appl Mater Interfaces 9:27290–27297. https://doi.org/10.1021/acsami.7b06451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Inamdar AI, Kim Y, Pawar SM, Kim JH, Im H, Kim H (2011) Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J Power Sources 196:2393–2397. https://doi.org/10.1016/j.jpowsour.2010.09.052

    Article  CAS  Google Scholar 

  34. Patil UM, Salunkhe RR, Gurav KV, Lokhande CD (2008) Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci 255:2603–2607. https://doi.org/10.1016/j.apsusc.2008.07.192

    Article  CAS  Google Scholar 

  35. Liu K-C, Anderson MA (1996) Porous nickel oxide/nickel films for electrochemical capacitors. J Electrochem Soc 143:7

    Article  Google Scholar 

  36. Pojtanabuntoeng T, Kinsella B, Ehsani H, McKechnie J (2017) Assessment of corrosion control by pH neutralisation in the presence of glycol at low temperature. Corros Sci 126:94–103. https://doi.org/10.1016/j.corsci.2017.06.018

    Article  CAS  Google Scholar 

  37. Liu G, Huang Z, Wang L, Sun W, Wang S, Deng X (2013) Effects of Ce4+ on the structure and corrosion resistance of electroless deposited Ni–Cu–P coating. Surf Coat Technol 222:25–30. https://doi.org/10.1016/j.surfcoat.2013.01.053

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The project (APODISE, No. ANR-11-IDEX-0001-02) leading to this publication has received funding from Excellence Initiative of Aix-Marseille University—A*MIDEX, a French “Investissements d’Avenir” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eyraud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahramian, A., Eyraud, M., Vacandio, F. et al. Single-step electrodeposition of superhydrophobic black NiO thin films. J Appl Electrochem 49, 621–629 (2019). https://doi.org/10.1007/s10800-019-01305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01305-2

Keywords

Navigation