Skip to main content
Log in

New electrochemical carbon paste electrode (CPE) based on Arabic Gum modifier and dedicated to 4-aminophenol

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Arabic Gum (AG) modified carbon paste electrode (CPE) was developed for the first time and used for sensitive detection of 4-aminophenol (PAP) in real samples. Energy dispersive X-ray spectroscopy and scanning electron microscopy were respectively used for the elemental and morphological characterization of unmodified and modified CPEs. Electrochemical studies of PAP using the AG immobilized on a CPE were performed with cyclic voltammetry and square wave voltammetry (SWV). The AG-CPE showed an enhanced electrochemical response, with sensitivity 1.6-fold greater than the signal obtained at the unmodified CPE in SWV. With AG-CPE, the linear dynamic range of PAP was found within the concentration range of 2.7–100 µM with a detection limit of 0.38 µM (S/B = 3), and a sensitivity of 1.2 µA L mol− 1. Using the proposed method, PAP was successfully detected in tap and dam water samples with standard addition method, suggesting that this method can be applied to determine this pollutant in wastewaters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mitchell S (1992) Aminophenols. In: Kirk-Othmer (ed) Encyclopedia of chemical technology, 4th edn. Wiley, New York, pp 580–604

    Google Scholar 

  2. Afzal KS, Hamayun M, Ahmed S (2006) Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzyme Microb Technol 38:10–13

    Article  CAS  Google Scholar 

  3. Xu H, Duan CF, Zhang ZF, Chen JY, Lai CZ, Lian M, Liu LJ, Cui H (2005) Flow injection determination of p-aminophenol at trace level using inhibited luminol-dimethylsulfoxide-NaOH-EDTA chemiluminescence. Water Res 39:396–402

    Article  CAS  PubMed  Google Scholar 

  4. Fairbrother JE (1974) Acetaminophen. In: Florey K (ed) Anal profiles of drug substances. Academic Press, New York, pp 5–109

    Google Scholar 

  5. Martin FL, McLean AE (1998) Comparison of paracetamol-induced hepatotoxicity in the rat in vivo with progression of cell injury in vitro in rat liver slices. Drug Chem Toxicol 21:477–494

    Article  CAS  PubMed  Google Scholar 

  6. De Gusseme B, Vanhaecke L, Verstraete W, Boon N (2011) Degradation of acetaminophen by Delftiatsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor. Water Res 45:1829–1837

    Article  CAS  PubMed  Google Scholar 

  7. Mbokou FS, Pontié M, Razafimandimby B, Bouchara J-P, Njanja E, Tonle KI (2016) Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon-based modified electrodes. Anal Bioanal Chem 408:5895–5903

    Article  CAS  PubMed  Google Scholar 

  8. Chang YP, Długołęcki K, Küpper J, Rösch D, Wild D, Willitsch S (2013) Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions. Science 342:98–101

    Article  CAS  PubMed  Google Scholar 

  9. Han XX, Pienpinijtham P, Zhao B, Ozaki Y (2011) Coupling reaction-based ultrasensitive detection of phenolic estrogens using surface-enhanced resonance raman scattering. Anal Chem 83:8582–8588

    Article  CAS  PubMed  Google Scholar 

  10. Prieto-Simón B, Saint C, Voelcker NH (2014) Electrochemicalbiosensors featuring oriented antibody immobilization via electrografted and self-assembled hydrazide chemistry. Anal Chem 86:1422–1429

    Article  CAS  PubMed  Google Scholar 

  11. Bloomfield MS (2002) A sensitive and rapid assay for 4-aminophenol in paracetamol drug and tablet formulation, by flow injection analysis with spectrophotometric detection. Talanta 58:1301–1310

    Article  CAS  PubMed  Google Scholar 

  12. Marin A, Garcia E, Garcia A, Barbas C (2002) Validation of a HPLC quantification of acetaminophen, phenylephrine and chlorpheniramine in pharmaceutical formulations: capsules and sachets. J Pharm Biomed Anal 29:701–714

    Article  CAS  PubMed  Google Scholar 

  13. Suntornsuk L, Pipitharome O, Wilairat P (2003) Simultaneous determination of paracetamol and chlorpheniramine maleate by micellarelectrokinetic chromatography. J Pharm Biomed Anal 33:441–449

    Article  CAS  PubMed  Google Scholar 

  14. Easwaramoorthy D, Yu YC, Huang HJ (2001) Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal Chim Acta 439:95–100

    Article  CAS  Google Scholar 

  15. Lin T, Li Z, Song Z, Chen H, Guo L, Fu F, Wu Z (2015) Visual and colorimetric detection of p-aminophenol in environmental water and human urine samples based on anisotropic growth of Ag nanoshells on Au nanorods. Talanta 148:62–68

    Article  CAS  PubMed  Google Scholar 

  16. Wang J (2006) Analytical electrochemistry, 3rd edn. Wiley, New Jersey

    Book  Google Scholar 

  17. Mbokou FS, Pontié M, Bouchara J-P, Tchieno MMF, Njanja É, Mogni A, Pontalier PY, Tonle KI (2016) Electroanalytical performance of a carbon paste electrode modified by coffee husks for the quantification of acetaminophen in quality control of commercialized pharmaceutical tablets. Inter J Electrochem. https://doi.org/10.1155/2016/1953278

    Article  Google Scholar 

  18. Pontié M, Mbokou FS, Bouchara J-P, Razafimandimby B, Egloff S, Dzilingomo O, Pontalier P-Y, Tonle KI (2018) Paracetamol sensitive cellulose-based electrochemical sensors. J Renew Mater 6:242–250

    Google Scholar 

  19. Verbeken D, Dierckx S, Dewettinck K (2003) Exudate gums: occurrence, production and applications. Appl Microbio Biotechnol 63:10–17

    Article  CAS  Google Scholar 

  20. Ibrahim OB, Osman ME, Hassan EA (2013) Characterization and simple fractionation of Acacia senegal. J Chem Acta 2: 11–17

  21. Odeku OA, Fell JT (2004) Evaluation of Khaya gum as directly compressible matrix system for controlled release. J Pharmacol 56:1365–1370

    Article  CAS  Google Scholar 

  22. Bilal S, Mohammed-DaboI A, Dewu BBM, Momoh OR, Abubakar S (2015) Refining and characterisation of gum arabic using vacuum filtration method for application in oil and gas drilling fluid formulation. J Exp Res 3:73–80

    Google Scholar 

  23. Zhang N, Xiao F, Bai J, Lai Y, Hou J, Xian Y, Jin L (2011) Label-free immunoassay for chloramphenicol based on hollow gold nanospheres/chitosan composite. Talanta 87:100–105

    Article  CAS  PubMed  Google Scholar 

  24. Tian G, Zhikai W, Yan W, Xiangyu L, Junyong S, Yanming L (2017) Flexible graphene oxide-wrapped SnO2 hollow spheres with high electrochemical sensing performance in simultaneous determination of 4-aminophenol and 4-chlorophenol. Electrochim Acta 250:1–9

    Article  CAS  Google Scholar 

  25. Peiling S, Rui X, Yuli W, Xi L, Jiebing A, Ting W, Zheru S, Xiao W, Qin W, Fathelrahman MS, Hao G, Wu Y (2017) Gold nanoparticles/tetraaminophenylporphyrin functionalized multiwalled carbon nanotubes nanocomposites modified glassy carbon electrode for the simultaneous determination of p-acetaminophen and p-aminophenol. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2017.09.008

    Article  Google Scholar 

  26. Huanshun Y, Qiang M, Yunlei Z, Shiyun A, Lusheng Z (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on grapheme-chitosan composite film modified glassy carbon electrode. Electrochim Acta 55:7102–7108

    Article  CAS  Google Scholar 

  27. Qingcui C, Lianmei J, Xiuhui T, Jiannong Y (2008) Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection. Anal Chim Acta 606:246–251

    Article  CAS  Google Scholar 

  28. Pontie M, Sikpo L, Touand G, Lahan R, Tapsoba I, Mallet R, Feng T (2011) Direct electroanalysis of p-nitrophenol (pnp) in estuarine and surface waters by a high sensitive type C/p-NiTSPc coating carbon fiber microelectrode (CFME). Electroanalysis 23:433–441

    Article  CAS  Google Scholar 

  29. Mehretie S, Admassie S, Hunde T, Tessema M, Solomon T (2011) Simultaneous determination of N-acetyl-p-aminophenol and p-aminophenol with poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode. Talanta 85:1376–1382

    Article  CAS  PubMed  Google Scholar 

  30. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  31. Yong L, Kai Y, Bin W, Changzhu Y, Jingdong Z (2017) An electrochemical sensor for selective detection of p-aminophenol using hemin-graphene composites and molecularly imprinted polymer. J Electrochem Soc 164:776–780

    Article  CAS  Google Scholar 

  32. Nadzirah SA, Wan Jeffrey B, Magaji L, Shalauddin M, Muhammad SM (2018) Fabrication of platinum nitrogen-doped graphenenanocomposite modified electrode for the electrochemical detection of acetaminophen. Sens Act B 266:375–383

    Article  CAS  Google Scholar 

  33. Biswas S, Chakraborty D, Das R, Bandyopadhyay R, Pramanik P (2015) A simple synthesis of nitrogen doped porous graphitic carbon: Electrochemical determination of paracetamol in presence of ascorbic acid and p-aminophenol. Anal Chim Acta 890:98–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Romain MALLET (SCIAM, Angers University, France) for recording the FEGSEM images and EDX spectra and Liliane DONGMO for EIS experiments. They also thank the International Science Program (ISP) for financial support of the postdoctoral position of Dr. Serge MBOKOU through the African Network of Electroanalytical Chemists (ANEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa Tapsoba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbokou Foukmeniok, S., Ilboudo, O., Njanja, E. et al. New electrochemical carbon paste electrode (CPE) based on Arabic Gum modifier and dedicated to 4-aminophenol. J Appl Electrochem 49, 575–584 (2019). https://doi.org/10.1007/s10800-019-01300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01300-7

Keywords

Navigation